第一章 绪论
一、是非判断题
1.1 材料力学的研究方法与理论力学的研究方法完全相同。 ( × ) 1.2 内力只作用在杆件截面的形心处。 ( × ) 1.3 杆件某截面上的内力是该截面上应力的代数和。 ( × ) 1.4 确定截面内力的截面法,适用于不论等截面或变截面、直杆或曲杆、基本变形或组合变
形、横截面或任意截面的普遍情况。 ( ∨ ) 1.5 根据各向同性假设,可认为材料的弹性常数在各方向都相同。 ( ∨ ) 1.6 根据均匀性假设,可认为构件的弹性常数在各点处都相同。 ( ∨ ) 1.7 同一截面上正应力ζ与切应力η必相互垂直。 ( ∨ ) 1.8 同一截面上各点的正应力ζ必定大小相等,方向相同。 ( × ) 1.9 同一截面上各点的切应力η必相互平行。 ( × ) 1.10 应变分为正应变ε和切应变γ。 ( ∨ ) 1.11 应变为无量纲量。 ( ∨ ) 1.12 若物体各部分均无变形,则物体内各点的应变均为零。 ( ∨ ) 1.13 若物体内各点的应变均为零,则物体无位移。 ( × ) 1.14 平衡状态弹性体的任意部分的内力都与外力保持平衡。 ( ∨ ) 1.15 题1.15图所示结构中,AD杆发生的变形为弯曲与压缩的组合变形。 ( ∨ )
1.16 题1.16图所示结构中,AB杆将发生弯曲与压缩的组合变形。 ( × )
二、填空题
A F B
A C B F C
D 题1.15图
题1.16图
D
1.1 材料力学主要研究 杆件 受力后发生的 变形 ,以及由此产生应力,的 应变 。
1.2 拉伸或压缩的受力特征是 外力的合力作用线通过杆轴线 ,变形特征是 。
1
沿杆轴线伸长或缩短
1.3 剪切的受力特征是 受一对等值,反向,作用线距离很近的力的作用 ,变形特征是 沿剪切面发生相对错动 。
1.4 扭转的受力特征是外力偶作用面垂直杆轴线 ,变形特征是 任意二横截面发生绕杆轴线的相对转动 。
外力作用线垂直杆轴线,外力偶作用面通过杆轴线1.5 弯曲的受力特征是 ,变形特征是 梁轴线由直线变为曲线 。
1.6 组合受力与变形是指 包含两种或两种以上基本变形的组合 。 强度 , 刚度1.7 构件的承载能力包括 和 稳定性 三个方面。 1.8 所谓 强度 ,是指材料或构件抵抗破坏的能力。所谓 刚度 ,是指构件抵抗变形的能力。所谓 稳定性 ,是指材料或构件保持其原有平衡形式的能力。
, 各向同性1.9 根据固体材料的性能作如下三个基本假设 连续性 , 均匀性 。 1.10 认为固体在其整个几何空间内无间隙地充满了组成该物体的物质,这样的假设称
、 应变变形等 就可以为 连续性假设 。根据这一假设构件的 应力 和 用坐标的连续函数来表示。
1.11 填题1.11图所示结构中,杆1发生 拉伸 变形,
杆2发生 压缩 变形,杆3发生 弯曲 变形。 1.12 下图 (a)、(b)、(c)分别为构件内某点处取出的单元体,变形
后情况如虚线所示,则单元体(a)的切应变γ= 2 α ;单元体(b)的切应变γ= α - β ;单元体(c)的切应变γ= 0 。
三、选择题
1.1 选题1.1图所示直杆初始位置为ABC,
2
(a)
α
α β
α α
α F 1 2 3 填题1.11图
α>β (b)
(c)
P A B B’ E C C’ D 作用力P后移至AB’C’,但右半段BCDE的形状不发生变化。试分析哪一种答案正确。 1、AB、BC两段都产生位移。
2、AB、BC两段都产生变形。 正确答案是 1 。
选题1.1图
1.2 选题1.2图所示等截面直杆在两端作用有力偶,数值为M,力偶作用面与杆的对称面
一致。关于杆中点处截面 A—A在杆变形后的位置(对于左端,由 A’ —A’表示;对于右端,由 A”—A”表示),有四种答案,试判断哪一种答案是正确的。
正确答案是 C 。
选题1.2图
1.3 等截面直杆其支承和受力如图所示。关于其轴线在变形后的位置(图中虚线所示),有
四种答案,根据弹性体的特点,试分析哪一种是合理的。
正确答案是 C 。
选题1.3图
第二章 拉伸、压缩与剪切
3
一、是非判断题
2.1 因为轴力要按平衡条件求出,所以轴力的正负与坐标轴的指向一致。 ( × ) 2.2 轴向拉压杆的任意截面上都只有均匀分布的正应力。 ( × ) 2.3 强度条件是针对杆的危险截面而建立的。 ( × ) 2.4. 位移是变形的量度。 ( × )
2.5 甲、乙两杆几何尺寸相同,轴向拉力相同,材料不同,则它们的应力和变形均相同。
( × )
2.6 空心圆杆受轴向拉伸时,在弹性范围内,其外径与壁厚的变形关系是外径增大且壁厚也
同时增大。 ( × ) 2.7 已知低碳钢的ζp=200MPa,E=200GPa,现测得试件上的应变ε=0.002,则其应力能用
胡克定律计算为:ζ=Eε=200×103×0.002=400MPa。 ( × )
2.9 图示三种情况下的轴力图是不相同的。 ( × )
2.10 图示杆件受轴向力FN的作用,C、D、E为杆件AB的三个等分点。在杆件变形过程中,
此三点的位移相等。 ( × )
A C D E B F F 钢 F F 木 F F F 钢
2.11 对于塑性材料和脆性材料,在确定许用应力时,有相同的考虑。 ( × ) 2.12连接件产生的挤压应力与轴向压杆产生的压应力是不相同的。 ( ∨ ) 二、填空题
拉力为正,压力为负2.1 轴力的正负规定为 。 2.2 受轴向拉伸或压缩的直杆,其最大正应力位于 横 截面,计算公式
F N A为 ? max ? ( ) max ,最大切应力位于 450 截面,计算公式F N 2max为 ? ? ? max 2 ? ( A )max 。
2.3 拉压杆强度条件中的不等号的物理意义是 最大工作应力σmax不超过许用应力[σ] ,
强度条件主要解决三个方面的问题是(1) 强度校核 ; (2) 截面设计 ;(3) 确定许可载荷 。 2.4 轴向拉压胡克定理的表示形式有 2 种,其应用条件是 σmax ≤σp 。
4
2.5 由于安全系数是一个__大于1_____数,因此许用应力总是比极限应力要___小___。 2.6 两拉杆中,A1=A2=A;E1=2E2;υ1=2υ2;若ε1′=ε2′ (横向应变),则二杆轴力FN1_=__FN2。 2.7 低碳钢在拉伸过程中依次表现为 弹性 、 屈服 、 强化 、 局部变形 四个阶段,其特征点分别是 σp ,σe,σs,σb 。 2.8 衡量材料的塑性性质的主要指标是 延伸率δ 、 断面收缩率ψ 。 2.9 延伸率δ=(L1-L)/L×100%中L1 指的是 拉断后试件的标距长度 。 2.10 塑性材料与脆性材料的判别标准是 塑性材料:δ≥5%, 脆性材料:δ< 5% 。 2.11 图示销钉连接中,2t2> t1,销钉的切应力η=2F/πd,销钉的最大挤压应力ζbs= F/dt1 。
2
2.12 螺栓受拉力F作用,尺寸如图。若螺栓材料的拉伸许用应力为[ζ],许用切应力为[η],按
拉伸与剪切等强度设计,螺栓杆直径d与螺栓头高度h的比值应取d/ h = 4[τ]/[σ] 。 2.13木榫接头尺寸如图示,受轴向拉力F作用。接头的剪切面积A= hb ,切应力
η= F/hb ;挤压面积Abs= cb ,挤压应力ζbs= F/cb 。
2.14 两矩形截面木杆通过钢连接器连接(如图示),在轴向力F作用下,木杆上下两侧的剪切
面积A= 2lb ,切应力η= F/2lb ;挤压面积Abs=2δb ,挤压应力ζbs= F/2δb 。 2.15挤压应力与压杆中的压应力有何不同 挤压应力作用在构件的外表面,一般不是均匀分布;压杆中的压应力作用在杆的横截面上且均匀分布 。 2.16图示两钢板钢号相同,通过铆钉连接,钉与板的钢号不同。对铆接头的强度计算应
5
包括: 铆钉的剪切、挤压计算;钢板的挤压和拉伸强度计算 。 若将钉的排列由(a)改为(b),上述计算中发生改变的是 钢板的拉伸强度计算 。对于
(a)、(b)两种排列,铆接头能承受较大拉力的是(a) 。(建议画板的轴力图分析)
三、选择题
3F4F4F(?)F2F(?)
2.1 为提高某种钢制拉(压)杆件的刚度,有以下四种措施:
(A) 将杆件材料改为高强度合金钢; (B) 将杆件的表面进行强化处理(如淬火等); (C) 增大杆件的横截面面积; (D) 将杆件横截面改为合理的形状。
正确答案是 C 2.2 甲、乙两杆,几何尺寸相同,轴向拉力F相同,材料不同,它们的应力和变形有四种可能:
(A)应力?和变形△l都相同; (B) 应力?不同,变形△l相同; (C)应力?相同,变形△l不同; (D) 应力?不同,变形△l不同。
正确答案是 C 2.3 长度和横截面面积均相同的两杆,一为钢杆,另一为铝杆,在相同的轴向拉力作用下,两杆的应力与变形有四种情况;
(A)铝杆的应力和钢杆相同,变形大于钢杆; (B) 铝杆的应力和钢杆相同,变形小于钢杆; (C)铝杆的应力和变形均大于钢杆; (D) 铝杆的应力和变形均小于钢杆。
∵ Es > Ea
正确答案是 A 2.4 在弹性范围内尺寸相同的低碳钢和铸铁拉伸试件,在同样载荷作用下,低碳钢试件的弹性变形为?1,铸铁的弹性变形为?2,则?1与?2的关系是;
∵ Ems > Eci
(A)?1>?2 ; (B)?1 2; (C)?1 =?2 ; (D)不能确定。
见P33,表2.2
正确答案是 B
6
2.5 等直杆在轴向拉伸或压缩时,横截面上正应力均匀分布是根据何种条件得出的。 (A)静力平衡条件; (B)连续条件;
(C)小变形假设; (D平面假设及材料均匀连续性假设。
正确答案是 D
第三章 扭转
一、是非判断题
3.1 单元体上同时存在正应力和切应力时,切应力互等定理不成立。 ( × ) 3.2 空心圆轴的外径为D 、内径为d ,其极惯性矩和扭转截面系数分别为
Ip??D432??d432,Wt??D3?d3 ( × )
16?163.3 材料不同而截面和长度相同的二圆轴,在相同外力偶作用下,其扭矩图、切应力及相对
7
扭转角都是相同的。 ( × ) 3.4 连接件承受剪切时产生的切应力与杆承受轴向拉伸时在斜截面上产生的切应力是相同
的。 ( × ) 二、填空题
3.1 图示微元体,已知右侧截面上存在与z方向成θ 角的切应力τ,试根据切应力互等定理
画出另外五个面上的切应力。
3.2 试绘出圆轴横截面和纵截面上的扭转切应力分布图。
z MeTo
?τ y
?max?maxx 填题3.2 填题3.1
3.3 保持扭矩不变,长度不变,圆轴的直径增大一倍,则最大切应力ηmax是原来的 1/ 8 倍,
单位长度扭转角是原来的 1/ 16 倍。
3.4 两根不同材料制成的圆轴直径和长度均相同,所受扭矩也相同,两者的最大切应力
_________相等 __,单位长度扭转 _不同___ _______。
3.5 公式???T?的适用范围是 等直圆轴; τmax≤ τp 。
IP3.6对于实心轴和空心轴,如果二者的材料、长度及横截面的面积相同,则它们的抗扭能 力 空心轴大于实心轴 ;抗拉(压)能力 相同 。 3.7 当轴传递的功率一定时,轴的转速愈小,则轴受到的外力偶距愈__大__,当外力偶距一
定时,传递的功率愈大,则轴的转速愈 大 。
3.8两根圆轴,一根为实心轴,直径为D1,另一根为空心轴,内径为d2,外径为D2,
D1-??0.84d??2?0.8,若两轴承受的扭矩和最大切应力均相同,则1= 。
D2D2343.9 等截面圆轴上装有四个皮带轮,合理安排应为 D、C轮位置对调 。
0.2 0.2 0.6 1.0 8 A B C D (单位:kN·m) 3.10 图中T 为横截面上的扭矩,试画出图示各截面上的切应力分布图。
T T T
3.11 由低碳钢、木材和灰铸铁三种材料制成的扭转圆轴试件,受扭后破坏现象呈现为:图(b),
扭角不大即沿45o螺旋面断裂;图(c),发生非常大的扭角后沿横截面断开;图(d),表面出现纵向裂纹。据此判断试件的材料为,图(b): 灰铸铁 ;图(c): 低碳钢 , 图(d): 木材 。若将一支粉笔扭断,其断口形式应同图 (b) .
三、选择题
3.1 图示圆轴,已知GIp,当m为何值时,自由端的扭转角为零。 ( B )
A. 30 N·m ; B. 20 N·m ; C. 15 N·m ; D. 10 N·m 。
A 2a B a C 30 N·m m 3.2 三根圆轴受扭,已知材料、直径、扭矩均相同,而长度分别为L;2L;4L,则单位扭转
角θ必为 D 。
A.第一根最大;B.第三根最大;C.第二根为第一和第三之和的一半; D.相同。 3.3 实心圆轴和空心圆轴,它们的横截面面积均相同,受相同扭转作用,则其最大切应力
是 C 。
?(Wt)()FW1 t空?实9 F2 F2 A.
空实空实空实; B. ?max; C. ?max; D. 无法比较。 ?max??max=?max??max3.4 一个内外径之比为α = d/D的空心圆轴,扭转时横截面上的最大切应力为η,则内圆周处
的切应力为 B 。
A. η; B. αη; C. (1-α3)η; D. (1-α4)η;
3.5 满足平衡条件,但切应力超过比例极限时,下列说法正确的是 D 。
A B C D
切应力互等定理: 成立 不成立 不成立 成立 剪切虎克定律: 成立 不成立 成立 不成立
3.6 在圆轴扭转横截面的应力分析中,材料力学研究横截面变形几何关系时作出的假设
是 C 。
A.材料均匀性假设; B.应力与应变成线性关系假设; C.平面假设。 3.7 图示受扭圆轴,若直径d不变;长度l不变,所受外力偶矩M不变,仅将材料由钢变为
铝,则轴的最大切应力(E),轴的强度(B),轴的扭转角(C),轴的刚度(B )。 A.提高 B.降低 C.增大 D.减小 E.不变
????S????AGS?GA
第四章 弯曲内力
一、是非判断题
4.1 杆件整体平衡时局部不一定平衡。 ( × ) 4.2 不论梁上作用的载荷如何,其上的内力都按同一规律变化。 ( × ) 4.3 任意横截面上的剪力在数值上等于其右侧梁段上所有荷载的代数和,向上的荷载在该截
面产生正剪力,向下的荷载在该截面产生负剪力。 ( × ) 4.4 若梁在某一段内无载荷作用,则该段内的弯矩图必定是一直线段。 ( ∨ ) 4.5简支梁及其载荷如图所示,假想沿截面 m-m将梁截分为二,若取梁的左段为研究对象,
则该截面上的剪力和弯矩与q、M无关;若取梁的右段为研究对象,则该截面上的剪力和弯矩与F无关。 ( × )
10
二、填空题
4.1 外伸梁ABC承受一可移动的载荷如图所示。设F、l均为
已知,为减小梁的最大弯矩值则外伸段的合理长度 a= l /5 。
4.2 图示三个简支梁承受的总载荷相同,但载荷的分布情况不同。在这些梁中,最大剪力
FQmax= F/ 2 ;发生在 三个 梁的 支座 截面处;最大弯矩Mmax= Fl/4 ;发生在 (a) 梁的 C 截面处。
∵Fa = F(l - a) / 4
三、选择题
4.1 梁受力如图,在B截面处 D 。
A. Fs图有突变,M图连续光滑;
B. Fs图有折角(或尖角),M图连续光滑; C. Fs图有折角,M图有尖角; D. Fs图有突变,M图有尖角。
4.2 图示梁,剪力等于零截面位置的x之
值为 D 。 A. 5a/6; B. 5a/6; C. 6a/7; D. 7a/6。
A a qa
F A
q C B 题4.1图 q C 3a 题4.2图 B x 4.3 在图示四种情况中,截面上弯矩 M为正,剪力Fs为负的是 ( B ) 。
11
(A)
Fs M
M Fs (B)
Fs M Fs M
(C)
(D)
4.4 在图示梁中,集中力 F作用在固定于截面B的倒 L刚臂上。梁上最大弯矩 Mmax与 C截
面上弯矩MC之间的关系是 B 。
∵MC =FD a = 2 a F/ 3 Mmax = FD 2a = 4 a F/ 3
4.5 在上题图中,如果使力 F直接作用在梁的C截面上,则梁上M A.前者不变,后者改变 B.两者都改变
C.前者改变,后者不变 D.两者都不变
maxF/3
2F/3
与Fsmax为 C 。
附录I 平面图形的几何性质
一、是非判断题
I.1 静矩等于零的轴为对称轴。 ( × ) I.2 在正交坐标系中,设平面图形对y轴和z轴的惯性矩分别为Iy 和Iz ,则图形对坐标原点
的极惯性矩为Ip = Iy 2+ Iz 2。 ( × ) I.3 若一对正交坐标轴中,其中有一轴为图形的对称轴,则图形对这对轴的惯性积一定为零。
( ∨ )
二、填空题
I.1 任意横截面对形心轴的静矩等于___0________。
I.2 在一组相互平行的轴中,图形对__形心_____轴的惯性矩最小。
三、选择题
I.1 矩形截面,C为形心,阴影面积对zC轴的静矩为(Sz)A, 其余部分面积对zC轴的静矩为(Sz)B ,(Sz)A与(Sz)B之
12
y C zc 间的关系正确的是 D 。
A. (Sz)A >(Sz)B; B. (Sz)A <(Sz)B; C. (Sz)A =(Sz)B; D. (Sz)A =-(Sz)B。
选题I.1图 yC
I.2 图示截面对形心轴zC的WZc正确的是 B 。
A. bH2/6-bh2/6;
zC B. (bH2/6)〔1-(h/H)3〕;
C. (bh2/6)〔1-(H/h)3〕; D. (bh2/6)〔1-(H/h)4〕。 b I.3 已知平面图形的形心为C,面积为 A,对z轴的
选题I.2图
惯性矩为Iz,则图形对在z1轴的惯性矩正确的是 D 。 A. Iz+b2A;
z B. Iz+(a+b)2A;
a C. Iz+(a2-b2) A;
C D. Iz+( b2-a2) A。 zC b z1
选题I.3图 H 第五章 弯曲应力
一、是非判断题
5.1 平面弯曲变形的特征是,梁在弯曲变形后的轴线与载荷作用面同在一个平面内。 ( ∨ ) 5.2 在等截面梁中,正应力绝对值的最大值│ζ│max必出现在弯矩值│M│max最大的截面上。
( ∨ )
5.3 静定对称截面梁,无论何种约束形式,其弯曲正应力均与材料的性质无关。 ( ∨ ) 二、填空题
5.1 直径为d的钢丝绕在直径为D的圆筒上,若钢丝仍处于弹性范围内,此时钢丝的最大弯2EdE??曲正应力ζmax= D ? d 2 1 ? D d ;为了减小弯曲正应力,应减小___钢丝___的
直径或增大 圆筒 的直径。
5.2 圆截面梁,保持弯矩不变,若直径增加一倍,则其最大正应力是原来的 1/8 倍。 5.3 横力弯曲时,梁横截面上的最大正应力发生在 截面的上下边缘 处,梁横截面上的最大切应力发生在 中性轴 处。矩形截面的最大切应力是平均切应力的 3/2 倍。
13
h 5.4 矩形截面梁,若高度增大一倍(宽度不变),其抗弯能力为原来的 4 倍;若宽度
增大一倍(高度不变),其抗弯能力为原来的 2 倍;若截面面积增大一倍(高宽比不变),其抗弯能力为原来的 2 2 倍。
5.5 从弯曲正应力强度的角度考虑,梁的合理截面应使其材料分布远离 中性轴 。 5.6 两梁的几何尺寸和材料相同,按正应力强度条件,(B)的承载能力是(A)的 5 倍。
A q
l B
A
q l/5 3l/5 l/5 B
(A) (B) 5.7 图示“T”型截面铸铁梁,有(A)、(B)两种截面放置方式,较为合理的放置方式
为 (b) 。
A C F B
?cmax 第六章 弯曲变形
一、是非判断题
(a) (b) ?tmax6.1 正弯矩产生正转角,负弯矩产生负转角。 ( × ) 6.2 弯矩最大的截面转角最大,弯矩为零的截面上转角为零。 ( × ) 6.3 弯矩突变的地方转角也有突变。 ( × ) 6.4 弯矩为零处,挠曲线曲率必为零。 ( ∨ ) 6.5 梁的最大挠度必产生于最大弯矩处。 ( × ) 二、填空题
,?(x)?w6.1 梁的转角和挠度之间的关系是 ( x ) 。
6.2 梁的挠曲线近似微分方程的应用条件是 等直梁、线弹性范围内和小变形 。 6.3 画出挠曲线的大致形状的根据是 约束和弯矩图 。判断挠曲线的凹凸性与拐
点位置的根据是 弯矩的正负;正负弯矩的分界处 。 6.4 用积分法求梁的变形时,梁的位移边界条件及连续性条件起 确定积分常数的 作用。 6.5 梁在纯弯时的挠曲线是圆弧曲线,但用积分法求得的挠曲线却是抛物线,其原因是
14
用积分法求挠曲线时,用的是挠曲线近似方程 。
6.6 两悬臂梁,其横截面和材料均相同,在梁的自由端作用有大小相等的集中力,但一
梁的长度为另一梁的2倍,则长梁自由端的挠度是短梁的 8 倍,转角又是 短梁的 4 倍。
6.7 应用叠加原理的条件是 线弹性范围内和小变形 。 6.8 试根据填题6.8图所示载荷及支座情况,写出由积分法求解时,积分常数的数目及确定
积分常数的条件。积分常数 6 个; 支承条件 wA = 0,θA = 0,w B = 0 。 连续条件是 wCL = wCR ,wBL = wBR ,θBL = θBR 。 6.9 试根据填题6.9图用积分法求图示挠曲线方程时,
需应用的支承条件是 wA = 0,w B = 0,w D = 0 ; 连续条件是 wCL = wCR ,wBL = wBR ,θBL = θBR 。
A a q B C a a D F=qa
A a F=qa B C a a m=qa2
D
填题6.8图 填题6.9图
15
第七章 应力和应变分析 强度理论
一、是非判断题
7.1 纯剪应力状态是二向应力状态。 ( ∨ ) 7.3 轴向拉(压)杆内各点均为单向应力状态。 ( ∨ ) 7.4 单元体最大正应力面上的切应力恒等于零。 ( ∨ ) 7.6 等圆截面杆受扭转时,杆内任一点处沿任意方向只有切应力,无正应力。 ( × ) 7.7 单元体切应力为零的截面上,正应力必有最大值或最小值。 ( × ) 7.8 主方向是主应力所在截面的法线方向。 ( ∨ ) 7.9 单元体最大和最小切应力所在截面上的正应力,总是大小相等,正负号相反。( × ) 7.10 一点沿某方向的正应力为零,则该点在该方向上线应变也必为零。 ( × ) 二、填空题
7.1 一点的应力状态是指 过一点所有截面上的应力集合 ,一点的应力状态可以用 单元体和应力圆 表示,研究一点应力状态的目的是 解释构件的破坏现象;建立复杂应力状态的强度条件 。
7.2 主应力是指 主平面上的正应力 ;主平面是指 τ=0的平面 ;主
16
三个主应力中只有一个不为0
7.2 一点的应力状态是指物体内一点沿某个方向的应力情况。 ( × )
7.5 单元体最大切应力面上的正应力恒等于零。 ( × )
方向是指 主平面的法线方向 ;主单元体是指 三对相互垂直的平面上τ= 0的单元体 。 7.3 对任意单元体的应力,当 时是单向应力状态;当
三个主应力中有二个不为0 三个主应力都不为0 时是二向应力状态;当 时是三向单元体各侧面上只有切应力 应力状态;当 时是纯剪切应力状态。
7.4 在 二个主应力相等的 情况下,平面应力状态下的应力圆退化为一个点圆;
在 纯剪切 情况下,平面应力状态下的应力圆的圆心位于原点; 在 单向应力状态 情况下,平面应力状态下的应力圆与η轴相切。
7.5 应力单元体与应力圆的对应关系是: 点面对应 ; 转向相同 ; 转角二倍 。
7.6 对图示受力构件,试画出表示A 点应力状态的单元体。
272.51
σ A
A A 893.22F F Me A 1030.78d l l d Me F d l Me (b) F A σ (c)
τ τ (a)
三、选择题
7.1 图示单元体所描述的应力状态为平面应力状态, 该点所有斜方向中最大的切应力
50MP 为 C 。
A. 15 MPa B. 65 MPa
80MP C. 40 MPa D. 25 MPa
7.2 图示各单元体中 (d) 为单向应力状态, (a) 为纯剪应力状态。 ? ? ?
? ? ? ?
?
17
(a) (b) (c) (d)
7.3 单元体斜截面上的正应力与切应力的关系中 A 。 A. 正应力最小的面上切应力必为零; B. 最大切应力面上的正应力必为零; C. 正应力最大的面上切应力也最大; D. 最大切应力面上的正应力却最小。
第八章 组合变形
一、是非判断题
8.1 材料在静荷作用下的失效形式主要有脆性断裂和塑性屈服两种。 ( ∨ ) 8.2 砖、石等脆性材料的试样在压缩时沿横截面断裂。 ( × ) 8.3 在近乎等值的三向拉应力作用下,钢等塑性材料只可能发生断裂。 ( ∨ ) 8.4 不同的强度理论适用于不同的材料和不同的应力状态。 ( ∨ ) 8.5 矩形截面杆承受拉弯组合变形时,因其危险点的应力状态是单向应力,所以不必根据强
度理论建立相应的强度条件。 ( ∨ ) 8.6 圆形截面杆承受拉弯组合变形时,其上任一点的应力状态都是单向拉伸应力状态。( × ) 8.7 拉(压)弯组合变形的杆件,横截面上有正应力,其中性轴过形心。 ( × ) 8.8 设计受弯扭组合变形的圆轴时,应采用分别按弯曲正应力强度条件及扭转切应力强度条
件进行轴径设计计算,然后取二者中较大的计算结果值为设计轴的直径。 ( × ) 8.9 弯扭组合圆轴的危险点为二向应力状态。 ( ∨ ) 8.10 立柱承受纵向压力作用时,横截面上只有压应力。 ( × ) 偏心压缩呢? 二、填空题
8.1 铸铁制的水管在冬天常有冻裂现象,这是因为 σ1>0且远远大于σ2,σ3;σbt较小 。 8.2 将沸水倒入厚玻璃杯中,如果发生破坏,则必是先从外侧开裂,这是因为 外侧有较大拉应力产生且σbt较小 。
18
228.3 弯扭组合构件第三强度理论的强度条件可表达为?r3?M?T???? 或:(Fl)2?0.75(Fa)2WZ????W该条件成立的条件是杆件截面为 圆截面或圆环截面 ,且杆件材料应为 塑性材料 。 8.4 塑性材料制的圆截面折杆及其受力如图所示,杆的横截面面积为A,抗弯截面模量为W,则图(a)的危险点在 A22截面的上下边缘 ,对应的强度条件为 ( Fl ) ? ( Fa ) W Z ? ?? ? ;图(b)的危险点在 AB段内任意截面的后边缘点 ,对应的强度条件为 F ? F a ? ?? ? ;试分别画出两图危险点的应力状态。
上AW?F ?A 471.77
C
B a l (a)
?A 471.77
C B a F
l (b)
?下?
19
第九章 压杆稳定
一、是非判断题
9.1 所有受力构件都存在失稳的可能性。 ( × ) 9.2 在临界载荷作用下,压杆既可以在直线状态保持平衡,也可以在微弯状态下保持平衡。
( × )
9.3 引起压杆失稳的主要原因是外界的干扰力。 ( × ) 9.4 所有两端受集中轴向力作用的压杆都可以采用欧拉公式计算其临界压力。 ( × ) 9.5 两根压杆,只要其材料和柔度都相同,则他们的临界力和临界应力也相同。 ( × ) 9.6 临界压力是压杆丧失稳定平衡时的最小压力值。 ( ∨ ) 9.7 用同一材料制成的压杆,其柔度(长细比)愈大,就愈容易失稳。 ( ∨ ) 9.8 只有在压杆横截面上的工作应力不超过材料比例极限的前提下,才能用欧拉公式计算其
临界压力。 ( × ) 9.9 满足强度条件的压杆不一定满足稳定性条件;满足稳定性条件的压杆也不一定满足强度
条件。 有应力集中时 ( ∨ ) 9.10 低碳钢经过冷作硬化能提高其屈服极限,因而用同样的方法也可以提高用低碳钢制成
的细长压杆的临界压力。 ( × ) 二、填空题
长度(l),约束(μ),横截面的形状和大小(i) 9.1 压杆的柔度λ综合地反映了压杆的 对临界应力的影响。
229.2 柔度越大的压杆,其临界应力越 小 ,越 容易 失稳。 Fcr??EI(?l)9.3 影响细长压杆临界力大小的主要因素有 E , I , μ , l 。 9.4 如果以柔度λ的大小对压杆进行分类,则当 λ≥λ1 的杆称为大柔度杆,
20
当 λ
2
<λ<λ1 的杆称为中柔度杆,当 λ≤λ2 的杆称为短粗杆。
229.5 大柔度杆的临界应力用 ? cr ? ? E ? 欧拉 公式计算,中柔度杆的临界应力用
?cr??s(?b)查表P392 ?(a) (b) (c) C(d) (e) ? cr ? a ? b ? 经验 公式计算,短粗杆的临界应力用 强度 公式计算。
9.6 两端为球铰支承的压杆,其横截面形状分别如图所示,试画出压杆失稳时横截面绕其转
动的轴。
ISa412??a2?a2/12?????IR?d464?d24??d24?143?IS?IR9.7 两根细长压杆的材料、长度、横截面面积、杆端约束均相同,一杆的截面形状为正方(矩)
形,另一杆的为圆形,则先丧失稳定的是 圆 截面的杆。 三、选择题
9.1 图示a,b,c,d四桁架的几何尺寸、圆杆的横截面直径、材料、加力点及加力方向均相
同。关于四行架所能承受的最大外力FPmax有如下四种结论,则正确答案是 A 。
0Imin的轴
FP000FP00FPFPFPFPFP0FP0FPFPFPFP FPFPFPFP(A)FPmax(a)?FPmax(c)?FPmax(b)?FPmax(d)
(B)FPmax(a)?FPmax(c)?FPmax(b)?FPmax(d)
(C)FPmax(a)?FPmax(d)?FPmax(b)?FPmax(c) (D)FPmax(a)?FPmax(b)?FPmax(c)?FPmax(d)
9.2同样材料、同样截面尺寸和长度的两根管状细长压杆两端由球铰链支承,承受轴向压缩
载荷,其中,管a内无内压作用,管b内有内压作用。关于二者横截面上的真实应力σ
21
A
(a)与σ(b)、临界应力σcr(a)与σcr(b)之间的关系,有如下结论。则正确结论是 。
(A)σ(a)>σ(b),σcr(a)=σcr(b);(B)σ(a)=σ(b),σcr(a)<σcr(b) (C)σ(a)<σ(b),σcr(a)<σcr(b); (D)σ(a)<σ(b),σcr(a)=σcr(b)
9.3 提高钢制细长压杆承载能力有如下方法。试判断哪一种是最正确的。
(A)减小杆长,减小长度系数,使压杆沿横截面两形心主轴方向的长细比相等; (B)增加横截面面积,减小杆长; (C)增加惯性矩,减小杆长; (D)采用高强度钢。
正确答案是 A 。
9.4 圆截面细长压杆的材料及支承情况保持不变,将其横向及轴向尺寸同时增大1倍,压杆
的 A 。
(A)临界应力不变,临界力增大;(B)临界应力增大,临界力不变; (C)临界应力和临界力都增大; (D)临界应力和临界力都不变。
?cr??2E?2????li?4??ld
22
第十章 动载荷
一、是非题
10.1 只要应力不超过比例极限,冲击时的应力和应变仍满足虎克定律。 ( ∨ ) 10.2 凡是运动的构件都存在动载荷问题。 ( × ) 10.3 能量法是种分析冲击问题的精确方法。 ( × ) 10.4 不论是否满足强度条件,只要能增加杆件的静位移,就能提高其抵抗冲击的能力。
应在弹性范围内
( × ) 二、填空题
10.1 图示各梁的材料和尺寸相同,但支承不同,受相同的冲击载荷,则梁内最大冲击应力由大到小的排列顺序是 (a) 、 (c) 、 (b) 。
10.2 图示矩形截面悬臂梁,长为L,弹性模量为E,截面宽为b,高为h=2b,受重量为P1?1?2H?的自由落体的冲击,则此梁的冲击动荷系数Kd= st (给出表达式),若H???st,
L/2 (a)
L/2 P H K L/2 (b)
L/2 P H P H K L/2 (c)
L/2 K 当P值增大一倍时,梁内的最大动应力增大 2 ? 1 倍?当H增大一倍时,梁内的最大动应力12 ?增大 1 倍?当L增大一倍时,梁内的最大动应力增大 2 ? 倍?当b增大一倍时,梁内
2的最大动应力增大 1?1 2 倍? ??dmax?Kd?stmax ?
1) P增大一倍时:
23 2H?stmax??st2HPl?3Pl3EIW4HEb43Pl3?Pl32b3bHEPlP
H h ?'dmax?2?dmax2)H增大一倍时: ?'dmax?2?dmax
一、是非判断题
3)l增大一倍时:
?'dmax?22?dmax
4)b增大一倍时:
?'1dmax?2?dmax
第十一章 交变应力
24
11.1 构件在交变应力下的疲劳破坏与静应力下的失效本质是相同的。 ( × ) 11.2 通常将材料的持久极限与条件疲劳极限统称为材料的疲劳极限。 ( ∨ ) 11.3 材料的疲劳极限与强度极限相同。 ( × ) 11.4 材料的疲劳极限与构件的疲劳极限相同。 ( × ) 一、填空题
11.1表示交变应力情况的有5个量值:σ m (平均应力),σ a(应力幅),r(循环特征),及σ max
和σ min,其中只有_2_个是独立的。
11.2 某构件内一点处的交变应力随时间变化的曲线如图所示, 则该交变应力的循环特征
是 -0.5 , 最大应力是 100MPa ,最小应力是 -50MPa ,平均应力是 25MPa 。
σ (MPa) 100 0 -50 t (s)
11.3 疲劳破坏的三个阶段: 裂纹的产生 , 裂纹扩展 , 脆性断裂 。 11.4 疲劳破坏的主要特征有 1)破坏时σmax<σs(σb);2)破坏前经过一定的应力循环次数;
3)破坏为脆性断裂 ; 4)断口有光滑区和粗糙区 。 11.5 提高构件疲劳强度的主要措施: 减缓构件的应力集中 ,
降低构件表面粗糙度 ; 增加构件表层强度 。 11.6 有效应力集中系数不仅与构件的形状、尺寸有关,而且与 材料的强度极限σb 有关。 11.7 三根材料相同的试件,分别在循环特征r =-1,r = 1,r = 0.5的交变应力下进行疲
劳试验,则:(1)r = 1 的持久极限最大;(2)r = -1 的持久极限最小。 11.8 如零件的规定安全系数为n,疲劳工作安全系数为n σ ,则用安全系数表示的疲劳强度
条件为 nσ ≥ n 。
11.9 螺栓受轴向的最大拉力P max = 6kN,最小拉力P min = 5 kN作用; 螺栓直径 d = 12 mm,
则其交变应力的循环特征 r = 5/6 ,应力幅值 σa = 4.42 MPa,平均应力σm = 48.63 MPa。
11.10下列做法是否能够提高构件的持久极限(填“能”或“不能”)?
25
(1) 表面滚压硬化( 能 );(2) 增加构件直径( 不能 ); (3) 表面抛光( 能 )。 三、选择题
11.1 分别受图示四种不同交变应力作用的试件,哪种情况最先会发生疲劳破坏?
正确答案是 (d) 。
σ σ σ σ σ σ σ σ/3
t0 t0 t0 t0
(c) (d) (a) (b)
11.2 可以提高构件持久极限的有效措施有如下四种答案:
(A)增大构件的几何尺寸; (B)提高构件表面的光洁度;
(C)减小构件连结部分的圆角半径;
(D)尽量采用强度极限高的材料。 正确答案是 (B) 。 11.3 图示四种交变应力,哪一种同时满足条件:r>0和σ m +σ a<0。
( r: 循环特征,σ m:平均应力,σ a:应力幅 ) 正确答案是 (c) 。
????????
0 t 0 0 t ??t t
(d) (b) (a) (c)
11.4 材料在对称循环下的持久极限为σ-1,脉动循环下的持久极限为σ0,静载荷下的强度极
限为σb, 它们之间的关系有如下四种答案: (A)σ-1>σ0>σb;(B)σb>σ0>σ-1; (C) σ0>σ-1>σb;(D) σb>σ-1>σ0 。
正确答案是 (B) 。
11.5 已知材料的σ-1、κ σ、ε σ、β,规定安全系数n,则构件在对称循环下的许用应力为:
(A)β σ-1/(n ε σ κ σ); (B)κ σ σ-1/(n ε σ β); (C)ε σ κ σσ-1/(n β); (D)ε σ β σ-1/(n κ σ)
正确答案是 (D) 。 11.6 已知材料的σ-1、κ σ、ε σ、β,构件的最大应力σ max ,构件在对称循环下的疲劳工作安
全系数n有四种答案:
(A) σ-1/[β σ max/(ε σ κ σ)]; (B) σ-1/[κ σ σ max/(ε σ β)]; (C) σ-1/(ε σ κ σ σ max/β); (D) σ-1/(ε σ β σ max/κ σ)。正确答案是 (B) 。
26
第十三章 能量方法及其应用一、是非判断题
13.1外力功与外力的终值和加载次序有关。 13.2计算弹性变形能可以应用叠加原理。 13.3弹性变形能恒为正值。
27
( × ) ( × ) ( ∨ )
13.4 如图所示结构,在应用单位荷载法求位移时,下述施加单位力的做法是否正确? (1)欲求图(a)中CD两点的相对线位移,则在C、D两点加一对反向并沿CD连线的单位力。 ( ∨ ) (2)欲求图(b)中C点左右截面的相对角位移;则在C点加一单位力偶。 ( × ) (3)欲求图(c)中AE两点的相对线位移,则在A、E两点加一对反向并沿AE连线的单位
B C 力。 D D E ( ∨ )
C A A (a)
(b) B A C (c) B
13.5 静不定结构的相当系统和补充方程不是唯一的,但其解答结果是唯一的。 ( ∨ ) 13.6 对于各种静不定问题,力法正则方程总可以写为?11X1??1F?0 ( × ) 二、选择题
13.1 图(a)示静不定桁架,图(b)、图(c)、图(d)、图(e)表示其四种相当系统,其中正确的是 (e) 。
13.2 图示静不定桁架,能选取的相当系统最多有 D 。
A.三种 B.五种 C.四种 D.六种
为一次内力超静定
三、填空题
13.1 判别图示各结构的静不定次数:图(a)是 0 ;图(b)是 0 ;图(c) 3 ;图(d) 1 。
28
13.2 图(a)所示静不定结构取相当系统如图(b)所示,其变形协调条件用变形比较法可表达为 △B = 0 ;用力法正则方程可表达为 δ11X1+△1F = 0 。
29