计量经济学书后答案 书第1-10章 下载本文

第一章 导论

1.计量经济学是一门什么样的学科?

答:计量经济学的英文单词是Econometrics,本意是“经济计量”,研究经济问题的计量方法,因此有时也译为“经济计量学”。将Econometrics译为“计量经济学”是为了强调它是现代经济学的一门分支学科,不仅要研究经济问题的计量方法,还要研究经济问题发展变化的数量规律。

可以认为,计量经济学是以经济理论为指导,以经济数据为依据,以数学、统计方法为手段,通过建立、估计、检验经济模型,揭示客观经济活动中存在的随机因果关系的一门应用经济学的分支学科。

2.计量经济学与经济理论、数学、统计学的联系和区别是什么? 答:计量经济学是经济理论、数学、统计学的结合,是经济学、数学、统计学的交叉学科(或边缘学科)。计量经济学与经济学、数学、统计学的联系主要是计量经济学对这些学科的应用。计量经济学对经济学的应用主要体现在以下几个方面:第一,计量经济学模型的选择和确定,包括对变量和经济模型的选择,需要经济学理论提供依据和思路;第二,计量经济分析中对经济模型的修改和调整,如改变函数形式、增减变量等,需要有经济理论的

1

指导和把握;第三,计量经济分析结果的解读和应用也需要经济理论提供基础、背景和思路。计量经济学对统计学的应用,至少有两个重要方面:一是计量经济分析所采用的数据的收集与处理、参数的估计等,需要使用统计学的方法和技术来完成;一是参数估计值、模型的预测结果的可靠性,需要使用统计方法加以分析、判断。计量经济学对数学的应用也是多方面的,首先,对非线性函数进行线性转化的方法和技巧,是数学在计量经济学中的应用;其次,任何的参数估计归根结底都是数学运算,较复杂的参数估计方法,或者较复杂的模型的参数估计,更需要相当的数学知识和数学运算能力,另外,在计量经济理论和方法的研究方面,需要用到许多的数学知识和原理。

计量经济学与经济学、数学、统计学的区别也很明显,经济学、数学、统计学中的任何一门学科,都不能替代计量经济学,这三门学科简单地合起来,也不能替代计量经济学。计量经济学与经济学的主要区别在于:经济学一般根据逻辑推理得出结论,说明经济现象和过程的本质与规律,大多是定性的表述。虽然理论经济学有时也会涉及经济现象和过程的数量关系,如产出随投入要素的增减而增减,但不提供这类数量关系的具体度量,不说明随投入要素的增减产出增减多少。计量经济学则要对经济理论所确定的数量关系作出具体估计,也就是对经济理论进行经验的证明。计量经济学与统计学最根本的区别在于:第一,计量经济

2

学是以问题为导向,以经济模型为核心的,统计学则是以数据为核心,常常也是以数据为导向的。虽然现代统计学并不排斥经济理论和模型,有时也会利用它们,但不一定以特定的经济理论或模型为基础和出发点,常常可以通过对经济数据的统计直接得出结论,侧重于数据的采集、筛选和处理;第二,计量经济学对经济理论的实证作用较强。计量经济学从经济理论和经济模型出发,进行分析的过程,实际上是对经济理论证实或证伪的过程。这使得它对经济理论的验证作用很强,比统计学强的多;第三,计量经济学对经济问题有更重要的指导作用。计量经济学通常不仅要对数据进行处理和分析,获得经济问题的一些数字特征,而且要借助于经济理论和数学工具,对经济问题作出更深刻的解剖和解读。经过计量经济分析实证检验的经济理论和模型,能对分析、研究和预测更广泛的经济问题起到重要作用。计量经济学与数学的区别不言而喻,因为数学只是计量经济分析及其理论研究的工具,与实证分析经济问题的计量经济学的区别显而易见。

3.经典计量经济学与非经典计量经济学是如何划分的? 答:经典计量经济学与非经典计量经济学的划分可从计量经济学的发展时期及其理论方法上的特征来把握。经典计量经济学一般指上世纪70年代以前发展起来的计量经济学,在理论方法上具有以下五个方面的共同特征:第一,在模型类型上,采用随机模

3

型;第二,在模型导向上,以经济理论为导向;第三,在模型结构上,采用线性或可化为线性的模型,反映变量之间的因果关系;第四,在数据类型上,采用时间序列数据或截面数据;第五,在估计方法上,采用最小二乘法或最大似然法。非经典计量经济学一般指上世纪70年代以后发展起来的计量经济学,也称现代计量经济学,与经典计量经济学理论方法上的五个方面的特征相对应,非经典计量经济学包括模型类型非经典计量经济学问题、模型导向非经典计量经济学问题、模型结构非经典计量经济学问题、数据类型非经典计量经济学问题、估计方法非经典计量经济学问题五个方面的内容。

4.计量经济研究中如何进行理论模型的设定?

答:理论模型的设定,是对经济问题的数学描述或模拟,涉及变量的设定、模型函数形式的设定、参数取值范围的设定三个方面。 理论模型设定中变量的设定,主要是解释变量的设定,因为被解释变量是作为研究对象的变量,可由研究问题本身直接确定。解释变量的设定需要通过以下几个方面把握:第一,解释变量应是根据经济理论或实践经验确定的被解释变量的主要影响因素,遗漏了主要影响因素或将次要影响因素甚至不相关因素引入模型,都可能导致研究结果的偏误;第二,若有多个解释变量,需注意避免解释变量之间的相关性。解释变量之间若存在一定的

4

相关关系,可直接影响参数估计量的性质,降低研究结果的可靠性;第三,在设定解释变量的同时,应注意保证与解释变量对应的观察数据的可得性,没有样本观察数据的支持,就得不到模型的参数估计值,进一步的研究也将无法展开。

模型函数形式的设定,首先,可以直接采用数理经济学已有的函数形式,另外,也可以根据样本观察数据反映出来的变量之间的关系设定,对于其他事先无法确定模型函数形式的情况,可采用各种可能的函数形式进行模拟,选择模拟结果最好的函数形式。需要指出的是,这里设定的模型函数形式只是模型函数形式的初步设定,在模型参数估计和检验的过程中,大多还会对模型的函数形式进行逐步调整,以得到较为合理的模型函数形式。 参数取值范围的设定主要根据经济理论或实践经验给出,参数取值范围的设定可用来检验模型参数估计结果的合理性。

5.计量经济学模型中的待估参数有哪些?

答:计量经济学模型的参数包括模型的结构参数和随机误差项的分布参数两大类。模型的结构乘数是包含在模型方程中的反映模型结构特征的参数,每一个结构参数以一个字母(多为希腊字母)表示,例如生产函数模型中的参数A、?、?、?,消费函数中的参数?、?,都是模型的结构参数。随机误差项的分布参数主要是随机误差项的均值和方差。

5

6.计量经济学模型的检验包括哪几个方面?为什么要进行模型的检验?

答:因为经济现象和过程本身是十分复杂的,理论模型的整个建立过程,从模型设定到参数估计,都可能存在一定的偏误。在模型设定过程中,可能由于所依据的经济理论对研究对象的解释不充分,或者由于自身对研究对象的认识的欠缺,导致变量选择的偏差或模型函数形式设定的错误;在模型参数估计过程中,可能由于样本数据的统计错误、代表性差,或者由于其他信息的不可靠,导致参数估计值与真实值存在较大差距。此外,无论是单方程计量经济学模型,还是联立方程计量经济学模型,都是建立在一定的假设前提下的,如果模型的建立违背了计量经济学的基本假设,也会导致错误的结果。对模型的检验通常包括经济意义经验、统计推断检验、计量经济检验、模型预测检验四个方面。

7.如何利用计量经济学模型进行政策评价?

答:政策评价是将经济目标作为被解释变量,将经济政策作为解释变量,利用计量经济学模型对各种可供选择的经济政策方案的实施后果进行模拟测算,从中选择较好的政策方案。

计量经济学模型用于政策评价,主要有三种方法: 1)工具——目标法。给定经济目标,即给定被解释变量的

6

取值,通过对模型求解,确定解释变量的取值,即确定具体的经济政策方案。

2)政策模拟。将各种不同的政策方案代入模型,计算各自的目标值,通过对目标值的比较决定经济政策方案的取舍。 3)最优控制方法。将计量经济学模型与最优化方法结合起来,选择使目标达到最优的政策或政策组合。

8.计量经济学模型中的被解释变量和解释变量、内生变量和外生变量是如何划分的?

答:在单方程计量经济学模型中,按照因果差异,将变量分为被解释变量(explained variable)与解释变量(explanatory variable)。被解释变量是模型的分析研究对象,是具有某种概率分布的随机变量,也称为“因变量”或“应变量”(dependent variable)、“回归子”(regressand)等。解释变量是分析研究对象的主要影响因素,是确定性的变量,也称为“自变量”(independent variable)、“回归元”(regressor)等。

在联立方程计量经济学模型中,按是否由模型系统决定,将变量分为内生变量(endogenous variables)和外生变量(exogenous variables)两大类。内生变量是由模型系统决定同时可能也对模型系统产生影响的变量,是具有某种概率分布的随机变量,外生变量是不由模型系统决定但对模型系统产生影响的变量,是确定

7

性的变量。

9.计量经济学模型中包含的变量之间的关系主要有哪些? 答:计量经济学模型中变量之间的关系主要是解释变量与被解释变量之间的因果关系,包括单向因果关系、相互影响关系、相互影响关系。 1)单向因果关系

经济变量之间的单向因果关系是单方程计量经济学模型研究的对象,指经济变量之间存在单向的内在联系,一个(一组)经济变量的水平直接影响或决定另一个经济变量的水平。 2)相互影响关系

经济变量之间的相互影响关系是联立方程计量经济学模型研究的对象,指变量之间存在双向的因果关系,即一变量的变化既引起另一变量的变化,反过来也受另一变量变化的影响。 3)相互影响关系

恒等关系是一种特殊的变量关系,实际上通常就是一些变量的定义,例如,储蓄等于可支配收入减去消费。恒等关系是变量之间的确定关系,不需要针对它们进行分析。

10.什么是行为方程、技术方程、制度方程、定义方程、平衡方程?各举一例说明。

8

答:方程是关于变量之间关系的表达式,计量经济学模型中的方程分为随机方程、恒等方程两大类。随机方程主要包括行为方程、技术方程、制度方程等,恒等方程主要包括定义方程、平衡方程等。

行为方程是反映居民、企业、政府经济行为的随机方程。如描述居民消费与收入等的关系的消费函数方程,反映居民的消费行为,是一个行为方程;

技术方程是反映客观经济技术关系的随机方程。如描述产出与投入要素之间关系的生产函数方程,反映一定生产技术条件下投入要素与产出之间的技术关系,是一个技术方程;

制度方程是反映政府政策、规定的随机方程。如描述税收与课税对象数额、税率之间关系的税收函数方程,反映政府的税收规定,是一个制度方程;

定义方程是反映经济学或经济统计学对经济变量的定义的恒等方程。以宏观经济学对国内生产总值的定义为例,按生产法,国内生产总值等于第一产业、第二产业、第三产业的增加值之和; 平衡方程是反映经济变量之间的某种平衡关系的恒等方程。如描述某种产品的供给等于需求的方程,反映该种产品的市场供需均衡,是一个平衡方程。

11.什么是单方程模型、联立方程模型、时间序列模型?三者之

9

间的关系如何?

答:单方程模型(single-equation model)是只含有一个方程的计量经济学模型;联立方程模型(simultaneous-equation model)是由多个方程组成的计量经济学模型;时间序列模型(time series model)是反映经济变量与时间变量之间关系的计量经济学模型。单方程模型、联立方程模型、时间序列模型分别适用于不同的情况和问题,分析方法也有区别。但这三种模型之间也有联系,联立方程模型是由多个单方程模型有机组合而成,单方程模型在联立方程模型中有很多应用,时间序列模型也是一种单方程模型。

12.计量经济学中常用的数据类型有哪些?各举一例说明。 答:根据生成过程和结构方面的差异,计量经济学中应用的数据可分为时间序列数据(time series data)、截面数据(cross sectional data)、面板数据(panal data)和虚拟变量数据(dummy variables data)。

时间序列数据是同一观察对象在不同时间点上的取值的统计序列,可理解为随时间变化而生成的数据。根据统计或观察的时间间隔的不同,时间序列数据有“年度数据”、“季节数据”、“月份数据”之分。比如说年度CPI、季节CPI、月份CPI。 截面数据是许多不同的观察对象在同一时间点上的取值的统计数据集合,可理解为对一个随机变量重复抽样获得的数据。例

10

如,以某100个居民家庭为样本,研究居民家庭的消费与收入之间的关系,这100个家庭的完整的收入和消费数据就是一个截面数据。

面板数据是结合了时间序列数据和截面数据特征的数据,是多个观察对象在不同时间点上的取值的统计数据集合。例如,以某100个居民家庭为样本,研究从1990—2005年居民家庭的消费与收入之间的关系,这16年来的100个家庭的完整的收入和消费数据就是一个面板数据。

虚拟变量数据是人为设定的虚拟变量的取值。例如人的性别分为女性和男性,可以用0和1来表示。

13.什么是数据的完整性、准确性、可比性、一致性? 答:1)完整性,指模型中所有变量在每个样本点上都必须有观察数据,所有变量的样本观察数据都一样多。

2)准确性,指样本数据必须准确反映经济变量的状态或水平。数据的准确性与样本数据的采集直接相关,通常是研究者所不能控制的。

3)可比性,指数据的统计口径必须相同,不同样本点上的数据要有可比性。

4)一致性,指母体与样本即变量与数据必须一致。

11

14.计量经济学作为一门独立的经济学科正式诞生的标志是什么?

答:计量经济学作为一门独立的学科,一般认为正式诞生于二十世纪三十年代初,其标志是:1930年挪威经济学家弗里希(R.Frisch)、荷兰经济学家丁伯根(J.Tinbergen)、美国经济学家费歇尔(I.Fisher)等在美国俄亥俄州克里夫兰组织成立世界计量经济学会(Econometric Society);1933年世界计量经济学会会刊《计量经济学》(Econometrica)创刊。

15.试论计量经济学在经济学科中的地位。

答:理论与方法的迅速发展和在经济活动实践中的广泛应用,使计量经济学在经济学科中占有了十分突出的地位。一般认为,1969年诺贝尔经济学奖的设立,标志着经济学已成为一门科学。在经济学走向科学化的过程中,计量经济学起了特殊作用,因而1969年的首届诺贝尔经济学奖授予了创立计量经济学的弗里希和丁伯根。据统计,在历届诺贝尔经济学奖获得者中,有2/3以上是计量经济学家,有10位直接因为对计量经济学发展的贡献而获奖;有近20位担任过世界计量经济学会会长;有30余位在获奖成果中应用了计量经济学。为此,第二届诺贝尔经济学奖得主美国著名经济学家萨缪尔森评价说:“第二次世界大战后的经济学是计量经济学时代”;第十二届诺贝尔经济学奖得主美国

12

著名经济学家克莱因评价说:“计量经济学已经在经济学科中居于最重要的位置”。

13

第二章 一元线性回归模型

1.什么是相关分析?什么是回归分析?相关分析与回归分析的关系如何?

答:相关分析(correlation analysis)是研究变量之间的相关关系的形式和程度的一种统计分析方法,主要通过绘制变量之间关系的散点图和计算变量之间的相关系数进行。

回归分析(regression analysis)是研究不仅存在相关关系而且存在因果关系的变量之间的依存关系的一种分析理论与方法,是计量经济学的方法论基础。

相关分析与回归分析既有联系又有区别。联系在于:相关分析与回归分析都是对存在相关关系的变量的统计相关关系的研究,都能测度线性相关程度的大小,都能判断线性相关关系是正相关还是负相关。区别在于:相关分析仅仅是从统计数据上测度变量之间的相关程度,不考虑两者之间是否存在因果关系,因而变量的地位在相关分析中是对等的;回归分析是对变量之间的因果关系的分析,变量的地位是不对等的,有被解释变量和解释变量之分。

2.随机误差项在计量经济学模型中的作用是什么?

答:计量经济学是研究经济变量之间存在的随机因果关系的理论

14

与方法,其中对经济变量之间关系的随机性的描述通过引入随机误差项(stochastic error)的方式来实现。

一个经济变量通常不能被另一个经济变量完全精确地决定,需要引入随机误差项来反映各种误差的综合影响,主要包括:

1)变量的内在随机性的影响; 2)解释变量中被忽略的因素的影响; 3)模型关系设定误差的影响; 4)变量观察值的观察误差的影响; 5)其他随机因素的影响。

3.什么是总体回归函数?什么是总体回归模型?

答:给定解释变量条件下被解释变量的期望轨迹称为总体回归曲线(population regression curve),或总体回归线(population regression line)。描述总体回归曲线的函数称为总体回归函数(population regression function)。

对于只有一个解释变量X的情形,总体回归函数为

E(Y/Xi)?(fXi)

表示对于解释变量X的每一个取值Xi,都有被解释变量Y的条件

(Y/Xi)(Y/Xi)期望E与之对应,E是X的函数。

对于含有多个解释变量X1、X2、L、Xk的情形,总体回归函数为

E(Y/X1i,X2i,L,Xki)?(fX1i,X2i,L,Xki)

L、Xki,表示对于解释变量X1、X2、L、Xk的每一组取值X1i、X2i、都有被解释变量Y的条件期望

E(Y/X1i,X2i,L,Xki)

(Y/X1i,X2i,L,Xki)与之对应,E是X1、X2、L、Xk的函数。

引入了随机误差项,称为总体回归函数的随机设定形式,也

15

是因为引入了随机误差项,成为计量经济学模型,称为总体回归模型(population regression model)。

4.什么是样本回归函数?什么是样本回归模型?

答:由于总体中包含的个体的数量往往非常多,总体回归函数的具体形式一般无法精确确定,是未知的,通常只能根据经济理论或实践经验对总体回归函数进行合理的假设,然后根据有限的样本观察数据对总体回归函数进行估计。根据样本数据对总体回归函数作出的估计称为样本回归函数(simple regression function)。 引入样本回归函数中的代表各种随机因素影响的随机变量,称为样本残差项、回归残差项或样本剩余项、回归剩余项,简称残差项或剩余项(residual),通常用ei表示。在样本回归函数中引入残差项后,得到的是随机方程,成为了计量经济学模型,称为样本回归模型。

5.线性回归模型中“线性”的含义是什么? 答:线性函数和通常意义下的线性函数不同,这里的线性函数指参数是线性的,即待估参数都只以一次方出现,解释变量可以是线性的,也可以不是线性的。 例如

Yi??0??1lnXi??i i?1,2,L,n Yi??0??1X12i??2X2i?L??kXki??i i?1,2,L,n 都是线性回归模型。

3Yi??0??1X1i??()?L??(??i 2X1i/X2i?8kXki?X2i) i?1,2,L,n

Yi??0??12Xi??i i?1,2,L,n Yi??0?(?1??02)X1i?1X2i?L??kXki??i i?1,2,L,n

?216

都不是线性回归模型。

Yi??0??1X1i?ln?2X2i?L??kXki??i

i?1,2,L,n

6.为什么要对模型提出假设?一元线性回归模型的基本假设有哪些?

答:线性回归模型的参数估计方法很多,但各种估计方法都是建立在一定的假设前提之下的,只有满足假设,才能保证参数估计结果的可靠性。为此,本节首先介绍模型的基本假设。 一元线性回归模型的基本假设包括对解释变量的假设、对随机误差项的假设、对模型设定的假设几个方面,主要如下:

1)解释变量是确定性变量,不是随机变量。

2)随机误差项具有0均值、同方差,且在不同样本点之间是独立的,不存在序列相关,即

E(?i)?0 i?1,2,L,n Var(?i)??2 i?1,2,L,n Cov(?i,?j)?0 i?j i,j?1,2,L,n

3)随机误差项与解释变量不相关。即

Cov(Xi,?i)?0 i?1,2,L,n

4)随机误差项服从正态分布,即

?i~N(0,?2) i?1,2,L,n

5)回归模型是正确设定的。

这5条假设中的前4条是线性回归模型的古典假设,也称为高斯假设,满足古典假设的线性回归模型称为古典线性回归模型(classical linear regression model)。

17

7.参数的普通最小二乘估计法和最大似然估计法的基本思想各是什么?

答:普通最小二乘法(ordinary least squares,OLS)是最常用的参数估计方法,其基本思想是使样本回归函数尽可能好地拟合样本数据,反映在图上,就是要使样本散点偏离样本回归直线的距离总体上最小。在样本容量为n的情况下,就是要使n个样本点的被解释变量的估计值与实际观察值的偏差总体上最小。为避免残差的正负抵消,同时考虑计算处理上的方便,最小二乘法以

min?ei2

i?1n表示被解释变量的估计值与实际观察值的偏差总体上最小,称为最小二乘准则。

最大似然法(maximum likelihood,ML),也称为最大或然法或极大似然法。最大似然法的基本思想是使从模型中取得样本观察数据的概率最大,就是说把随机抽取得到的样本观察数据看作是重复抽取中最容易得到的样本观察数据,即概率最大,参数估计结果应该反映这一情况,使得到的模型能以最大概率产生样本数据。

8.普通最小二乘参数估计量和估计值各有哪些性质?

18

答:在满足基本假设情况下,一元线性回归模型的普通最小二乘参数估计量是最佳线性无偏估计量。

用普通最小二乘法估计得到的一元线性回归模型的样本回归函数具有如下性质:

1. 样本回归线过样本均值点,即点满足样本回归函数(Y 、X)????X; ???Yi01i??Y; 2. 被解释变量的估计的均值等于实际值的均值,即Y3. 残差和为零,即?ei?0;

i?1n4. 解释变量与残差的乘积之和为零,即?Xiei?0;

i?1n5. 被解释变量的估计与残差的乘积之和为零,即?Y?iei?0。

i?1n

9.随机误差项方差的普通最小二乘估计和最大似然估计各是什么?是否是无偏估计?

随机误差项的方差的普通最小二乘估计量为

2e?ii?1n?2??n?2

是一个无偏估计量。

随机误差项的方差的最大似然估计量为

1n2???ei ?ni?12 19

与普通最小二乘估计量不同,随机误差项的方差的最大似然估计量是一个有偏估计量。

10.什么是拟合优度?什么是拟合优度检验?拟合优度通过什么指标度量?为什么残差平方和不能作为拟合优度的度量指标? 答:拟合优度指样本回归线对样本数据拟合的精确程度,拟合优度检验就是检验样本回归线对样本数据拟合的精确程度。 样本残差平方和是一个可用来描述模型拟合效果的指标,残差平方和越大,表明拟合效果越差;残差平方和越小,表明拟合效果越好。但残差平方和是一个绝对指标,不具有横向可比性,不能作为度量拟合优度的统计量。

所以拟合优度检验的度量指标是通过残差平方和构造的决定系数来进行检验的。决定系数公式是:

R2?ESSRSS?1?TSSTSS

与残差平方和不同,决定系数R2是一个相对指标,具有横向可比性,因此可以用作拟合优度检验。

11.一元线性回归模型的普通最小二乘参数估计量的分布如何?

? 、??满足线性性,可表答:由于?0 、?1的普通最小二乘估计量?01? 、??也服从正态分布。 示为被解释变量Yi的线性组合,所以?01所以

20

i?1?:N(? ,??2) 00 nn?xi2i?1?Xn2i?: ?1N(?1 , n?22i)

?xi?1进行标准化变换可得

????00??SE(?0)????00?Xi?1ni?1n :N(0,1) (1)

2i?2n?xi2????????111?1:N(0,1) 2?SE(?1)? (2)

?xi?1n2i

其中,随机误差项?i的方差?2的真实值未知,只能用其无偏估计量

?2???ei?1n2in?2

? 、??的方差和标准差的?2替代?2后得到的?替代。用无偏估计量?01??估计量分别称为?0 、?1的样本方差和样本标准差,样本方差和样?、SE?表示,即 本标准差可分别用 Var?(??)Var0??Xi?1ni?1n2i??2

n?xi2?2???Var(?1)?n?xi2i?1

?2替代?2后,式(1)用?、(2)中的统计量服从自由度为n?2的t分布,将替代后的统计量分别记为t0 、t1,有

????0t0?0???SE(?0)????00?Xi?1ni?1n:(tn-2)

2i?2?n?xi2 21

????????11t1??11:(tn-2) 2??SE(?1)???xi?1n2i

12.什么是变量显著性检验?

答:一元线性回归模型中,?1是否显著不为0,反映解释变量对被解释变量的影响是否显著,所以常针对原假设H0 :?1?0,备择假设H1 :?1?0,进行检验,称为变量显著性检验。原假设为H0 :?1?0,备择假设为H1 :?1?0时,根据原假设

??1t1?:(tn-2) ??SE(?1)对于给定的显著性水平?,查自由度为n?2的t分布临界值,并计

算t1的值,如果

t1?[?t?,t?]

22接受原假设H0 :?1?0,认为解释变量对被解释变量的影响不显著;反之,如果

t1?t?

2则拒绝原假设H0 :?1?0,接受备择假设H1 :?1?0,认为解释变量对被解释变量的影响显著。

13.为什么被解释变量总体均值的预测置信区间比个别值的预测置信区间窄?

(Y/X0)答:被解释变量的总体均值E的波动,主要取决于样本数

据的抽样波动。被解释变量的个别值Y0的波动,除受样本数据的抽样波动的影响外,还受随机误差项?i的影响。反映在式(2-50)、

?(Y?(e)?)式(2-51)中,SE0?SE0,总体均值的预测置信区间窄于个

22

别值的预测置信区间。

14.由1981—2005年的样本数据估计得到反映某一经济活动的计量经济学

模型,利用模型对2050年该经济活动的情况进行预测,是否合适?为什么?

答:因为在解释变量的样本均值X处,样本观察数据的代表性往

(Y/X0)往较好,即抽样波动往往较小,被解释变量的总体均值E和

个别值Y0的波动较小。反之,解释变量X的取值偏离X的距离越大,样本观察数据的代表性往往越差,即抽样波动往往越大,被

(Y/X0)解释变量的总体均值E和个别值Y0的波动越大。由此可见,

用回归模型作预测时,解释变量的取值不宜偏离解释变量的样本均值X太大,否则预测精度会大大降低。

所以利用模型对2050年的经济活动的情况进行预测不合适。

15.在一元线性回归模型Yi??0??1Xi??i中,用不为零的常数?去乘每一个X值,对参数?0与?1的估计值、Y的拟合值、残差会产生什么样的影响?如果用不为零的常数?去加每一个X值,又会怎样?

????X?e,则有 解答:记原总体模型对应的样本回归模型为Yi??01ii????1xiyi?xi2??Y???X , ?01 23

Y的拟合值与残差分别为

????X ???Yi01i????X) ei?Yi?(?01i记X*??Xi,则有

X*X??n*i??X

x*?Xi*?X*??xi

记新总体模型对应的样本回归模型为

?0???1Xi*?ei* Yi??则有

?1?xy???(x)*ii*2i???xy??x?ii22i??xy??x1ii2i??1??1

?0?Y???1X*?Y??1??X??? ?1?X?Y??10于是在新的回归模型下,Y的拟合值与残差分析分别为

*??1???X??????X ?????Y??X??i01i01i01i???1???X*)?Y?(?????X) ?0???1Xi*)?Yi?(?ei*?Yi?(?01ii01i?可见,用不为零的常数?去乘每一个X值,?1的估计值变为原来的1?,

如果记

Xi*?Xi??,

?0的估计值、Y的拟合值与模型的残差不变。

xi*?xi

于是新模型的回归参数分别为

24

?1?xy???(x)*ii*2i??xiyi???1 2x?i?(X*??)?Y???X*??????????? ?0?Y???1X*?Y???11101在新的回归模型下,Y的拟合值与残差分别为

?????)???(X??)??????X ????0???1Xi*?(?Yi011i01i?????)???(X??)]?Y?(?????X) ?0???1Xi*)?Yi?[(?ei*?Y?(?011ii01i?0的估计值改变,可见,如果用不为零的常数?去加每一个X值, ?1的估计值、Y

的拟合值与模型的残差不变。

16.在一元线性回归模型Yi??0??1Xi??i中,用不为零的常数?去乘每一个Y值,对参数?0、?1的估计值会产生什么样的影响?如果用不为零的常数?去加每一个Y值,又会怎样?

????X?e,则有 解答:记原总体模型对应的样本回归模型为Yi??01ii????1xiyi?xi2??Y???X , ?01Y的拟合值与残差分别为

????X ???Yi01i????X) ei?Yi?(?01i记Y*??Yi,则有

Y*Y??n*i??Y

y*?Yi*?Y*??yi

记新总体模型对应的样本回归模型为

?0???1Xi?ei* Yi*?? 25

则有

?1?xy???(x)ii*i2x?y???xi2iixy????xi2ii? ???1?X??(Y???X)???? ?0?Y*???1X??Y????110可见,用不为零的常数?去乘每一个Y值,?0、?1的估计值会变为原来的?倍。

如果记

Yi*?Yi??,

yi*?yi

于是新模型的回归参数分别为

?1?xy???(x)ii*i2??xy?xi2ii? ??1?X?Y???X*????????0?Y*???1X?Y?????110

可见,用不为零的常数?去加每一个Y值,?0的估计值比原来增大?、?1的估计值不变。

17.(注意:本题的数据有误,需做修改,Y的均值和平方和、X的平方和做了修改)由某公司分布在12个地区的销售点的销售量(Y)和销售价格(X)数据得出如下结果:

X?621.3 Y?205.6

?Xi?1122i?5564218

?Yii?1122?529835

?XiYi?1396698

i?112 1)建立销售量对价格的一元线性回归方程; 2)求决定系数R2。 解答:1)由已知条件知:

26

?12Xi?n?X?7455.6

i?1?12Yi?n?Y?2467.2i?1故

?1212(Xi?X)(Yi?Y)??YXi?YiX?XY)i?1?(XiYii?112??XiYi?n?XY

i?1?-136173.36又因为

?12(X?X)2122i?(X?2XX?X2?1?ii)ii?1?5564216-12?621.32

?932053.7所以

12iyi????xi?1-136173.36112??x2932053.7??0.146i

i?1??0?Y???1X?205.6?0.146?621.3?296.3098所以销售量对价格的一元线性回归方程为:

Y?i?296.3098?0.146Xi 2)由于

1212RSS??(YY?i)2??(Y2i?2YYi?i?Y?2i?i)

i?1i?1而Y?i?296.3098?0.146Xi,所以 27

??2RSS??(Yi2?2YYii?Yi)i?12????????Yi?2?YYii??Yi??Yi?2?Yi(?0??1Xi)??(?0??1Xi)222i?112i?1i?1i?1i?120i?112121212121212????????Yi?2?0?Yi?2?1?XiYi?12??2?0?1?Xi??2i?1i?1i?1i?112121221?Xi?1122i?529835?2?296.3098?2467.2?2?0.146?1396698 ?12?296.30982?2?296.3098?0.146?7455.6+0.1462?5564218?2683.7161212TSS??(Yi?Y)??Yi2?nY22i?1i?1?529835-12?205.62?22578.68

所以

R2?1?RSS2683.716?1??0.88 TSS22578.6818.《华尔街日报1999年年鉴》(The Wall Street Journal Almanac 1999)公布的美国各航空公司业绩统计数据显示,各航空公司航班正点到达比率和每10万乘客投诉次数如表2-9所示。 表2-9 美国各航空公司航班正点到达比率和每10万乘客投诉

次数

航空公司名称 西南(Southwest)航空公司 大陆(Continental)航班正点率(%) 81.8 76.6 76.6 投诉率(次/10万乘客) 0.21 0.58 0.85 28

航空公司 75.7 0.68 西北(Northwest)航73.8 0.74 空公司 72.2 0.93 美国(US Airways)71.2 0.72 航空公司 70.8 1.22 联合(United)航空68.5 1.25 公司 美洲(American)航空公司 德尔塔(Delta)航空公司 美国西部(Americawest)航空公司 环球(TWA)航空公司 要求:

1)画出这些数据的散点图;

2)根据散点图确定两变量之间存在什么关系; 3)求投诉率对航班正点到达比率的回归方程; 4)对回归方程的斜率的意义作出解释;

29

5)如果航班正点率为80%,估计每10万旅客投诉的次数是多少。

解答:1)设投诉率为被解释变量y,航班正点达比率为解释变量x,以y为纵轴,以x为横轴作散点图。

y0.2680.40.60.81.01.2707274x76788082

2)根据散点图可确定两变量之间反向的相关关系,并呈现线性关系。

3)可得回归方程:

?i?6.01783?0.07041?xi y(5.719) (-4.967)

R2?0.779

4)上述的回归结果的斜率表示,航班正点达比率提高1个百分点,那么投诉率会将下降0.07041(次/10万乘客);

30

5)如果航班正点率为80%,代入到回归方程,可得:

??6.01783?0.07041?80?0.38468(次/10万乘客) y

19.我国1979—2004年的国内生产总值与财政收入数据如表2-10所示。

表2-10 我国国内生产总值与财政收入数据 单位:

亿元

年份 财政收国内生产入Y 总值X 4038.2 4517.8 4862.4 5294.7 5934.5 7171 8964.4 年份 财政收入Y 国内生产总值X 26638.1 34634.4 46759.4 58478.1 67884.6 74462.6 78345.2 1979 1146.38 1980 1159.93 1981 1175.79 1982 1212.33 1983 1366.95 1984 1642.86 1985 2004.82 1992 3483.37 1993 4348.95 1994 5218.1 1995 6242.2 1996 7407.99 1997 8651.14 1998 9875.95 1986 2122.01 10202.2 1999 11444.08 82067.5 1987 2199.35 11962.5 2000 13395.23 89403.6 31

1988 2357.24 14928.3 2001 16386.04 97314.8 1989 2664.9 1990 2937.1 16909.2 2002 18903.64 105172.2 18547.9 2003 21715.25 117390.2 1991 3149.48 21617.8 2004 26396.47 136875.9 要求:

1)建立财政收入随国内生产总值变化的一元线性回归模型; 2)对模型进行检验;

3)若2005年的国内生产总值为155936.8,求2005年财政收入的预测值和预测置信区间(取?=0.05)。

解答:1)建立财政收入随国内生产总值变化的一元线性回归模型:

???482.7?0.1662?X Yii(-0.892) (18.411)

R2?0.9339

2)从回归的结果看,模型拟合较好。可决系数为0.9339,表明模型在整体上拟合得非常好。从截距项与斜率项的t检验值看,在5%的显著性水平下,斜率项通过检验,而截距项则不能通过。去掉截距项,重新估计模型,可得新的回归方程:

32

??0.1602?X Yii(26.42)

并且从斜率项的值看,0<0.1602<1,符合实际经济情况。 3)若2005年的国内生产总值为155936.8,则2005年财政收入预测的点估计值:

Y2005?0.1602?155936.8? 24984.92

在95%的置信度下,Y2005的预测区间为:

(20700.16,29269.68)

33

第三章 多元线性回归模型

1.多元线性回归模型的基本假设有哪些?在多元线性回归模型的参数估计量的无偏性、有效性的证明中各用了哪些? 解答 多元线性回归模型的基本假设也包括对解释变量的假设、对随机误差项的假设、对模型设定的假设几个方面,主要如下: 1)解释变量是确定性变量,不是随机变量,解释变量之间不相关,即X矩阵是n?阶非随机矩阵,X矩阵列满秩 (k?1)Rank(X)?k?1 据此,有

Rank(X?X)?k?1

矩阵X?X非奇异。

2)随机误差项具有0均值、同方差,且在不同样本点相互独立,不存在序列相关性,即

E(?i)?0 i?1,2,L,n Var(?i)??2 i?1,2,L,n Cov(?i ,?j)?0 i?j i?1,2,L,n

用矩阵形式表示为

(?1)??1??E??????E(?)2?E(?)? E?2????0 ?M??M??????E(?)n??n??Cov(?)? E{???E(?)]???E(?)]?}?E(???)

34

??20L?20?L???MM?0L?00??0???2I M???2?3)解释变量与随机误差项不相关,即

Cov(Xji ,?i)?0 j?1,2,L,k i?1,2,L,n

4)随机误差项服从正态分布,即

?i?N(0,?2) i?1,2,L,n

用矩阵形式可表示为

??N(0,?2I)

5)回归模型是正确设定的。

同一元线性回归模型,在这5条假设中,前4条假设是古典假设,若前两条假设满足,第3条假设自然满足,并且由第2条假设有

E(?i2)??2 i?1,2,L,n E(?i?j)?0 i?j i?1,2,L,n

在证明参数估计量的无偏性时,利用了解释变量非随机或与随机干扰项不相关的假定;在证明参数估计量的有效性时用到了随机干扰项同方差且无序列相关的假定。

2.对于多元线性回归模型Yi??0??1X1i??2X2i?L??kXki??i,证明 (1)E(Yi)??0??1X1i??2X2i?L??kXki (2)Var(Yi)??2

(3)Cov(Yi,Yj)?0 i?j

证 (1)由多元线性回归模型的基本假设可知:

E(?i)?0

35

那么,

E(Yi)?E(?0??1X1i??2X2i????kXki??i)?E(?0)?E(?1X1i)?E(?2X2i)???E(?kXki)?E(?i) ??0??1X1i??2X2i????kXki(2)证明如下:

QYi??0??1X1i??2X2i?L??kXki??iQXj是确定性量 j?1,2,L,k?Var(Yi)?Var(?i)??2

(3)证明如下:

Cov(Yi,Yj)?E[Yi?E(Yi)][Yj?E(Yj)]?E(?i?j)?0

3.在多元模型中,为何要对决定系数进行调整?调整的决定系数R2与F的关系如何?

解答 在多元线性回归模型中,因为决定系数R2随解释变量数目的增加而增大(或至少不变),所以不能利用决定系数R2进行解释变量数目不同的模型的拟合优度的比较。同时,若以决定系数

还会造成通过增加解释变量数目提高模R2度量模型的拟合优度,

型拟合优度的倾向,而事实上,解释变量的数目并非越多越好,若增加的解释变量不是被解释变量的重要影响因素,甚至是被解释变量的不相关因素,反而会对模型产生负面影响。正是由于存在这样的缺陷,决定系数R2在多元线性回归模型拟合优度评价方面的作用受到了很大的限制。

克服决定系数R2的上述缺陷的方法,是对决定系数R2进行适当的调整,得到调整的决定系数。

调整的决定系数R2与F统计量存在下列关系:

n?1R2?1?

n?k?1?kF或

R2/kF? (1?R2)/(n?k?1)36

4.t检验、F检验的关系如何?

解答 变量显著性检验(t检验)是针对单个解释变量对被解释变量的影响是否显著所作的检验,检验被检验变量的参数为0是否显著成立;方程显著性检验(F检验)是针对所有解释变量对被解释变量的联合影响是否显著所作的检验,检验被解释变量与解释变量之间的线性关系在总体上是否显著成立。

5.对于多元线性回归模型Yi??1X1i??2X2i?L(1)求参数的普通最小二乘估计量。

(2)对于该模型,参数的普通最小二乘估计量是否依然满足线性性、无偏性、有效性? (3)对于该模型,是否依然有

??kXki??i

?ei?1ni?0

?eiXji?0(j?1,2,Li?1n,k)

?eiY?i?0

i?1n-1(X?X)X?Y 解答 (1)???(2)依然满足线性性、无偏性、有效性 (3)依然有?ei?0 ?eiXji?0(j?1,2,Li?1i?1nn,k)

?eiY?i?0

i?1n6.证明,在?显著性水平下,当ti信区间不包括0。

?t?时,?i的置信度为1??的置

2解答 在?显著性水平下,当|ti|?t?时,即

2|ti|?|??iS??i?|?t?S????t?S|?t??|???i?i???22i2i 或

???t?S??i??2i

37

??t?S??0 ??i??2i或

??t?S??0 ?i??2i而在

2i1??i的置信度下,

?i的置信区间是:

??t?S?,???t?S?) (?i?i???2??t当?i???t当?i?2?S???0时, ?i的置信区间的下限大于

i0; 0;

2?S???0时, ?i的置信区间的上限小于

i??i的置信度为1??的置信区间不包括0。

7.为研究某地家庭书刊消费与家庭收入、户主受教育程度之间的关系,建立了家庭书刊年消费支出Y(元)、家庭月平均收入X1(元)、户主受教育年数X2(年)的模型,用抽样得到的35个家庭的数据估计得

? ? 8.2617 ? 0.0208X ? 1.2698X Yi1i2i t?(3.356763)(?4.237629) (2.965781)R2?0.961542 R2=0.936783 F?98.523926 n?35

(1)从经济意义上考察模型的合理性。

(2)在5%的显著性水平上,进行变量显著性检验。 (3)在5%的显著性水平上,进行方程总体显著性检验。 解答 (1)家庭月平均收入越高,家庭书刊年消费支出相应会增加,但不会有收入增加的那么快,所以家庭月平均收入的系数应大于0,小于1;户主受教育年数越多,那么对文化产品的需求也会越多,家庭书刊年消费支出相应会增加,所以其系数大于0。 从经济意义上看,模型参数是比较合理的。 (2)在5%的显著性水平上,查表得

t?(n?k?1)?t0.025(32)?2.036933

238

显然,两估计参数计算的t值大于临界值,拒绝它们各自为零的原假设,两变量显著。

(3)在5%的显著性水平上,自由度为(2,32)的F分布的临界值为3.294537,计算的F值大于该临界值,所以拒绝原假设,方程总体显著。

8.(注意:本题数据有误,需修改,回归平方和、总平方和调换了位置)一个二元线性回归模型的回归结果如表3-5所示。

表3-5 回归分析结果

方差来源 来自回归 来自残差 来自总离差 平方和 17058 26783 自由度 32 (1)求样本容量n,残差平方和RSS,回归平方和ESS的自由度,残差平方和RSS的自由度。

(2)求决定系数R2和调整的决定系数R2。

(3)根据以上信息,在给定显著性水平下,可否检验两个解释变量对被解释变量的联合影响是否显著?为什么?

(4)根据以上信息,在给定显著性水平下,可否检验两个解释变量各自对被解释变量的影响是否显著?为什么?

解答 (1)总离差平方和的自由度为n-1,所以样本容量为33。

39

RSS?TSS?ESS?26783-17058?9725

因为回归平方和的自由度为解释变量个数,所以为2。残差平方和的自由度为n-k-1=30。

(2)

R2?ESS17058??0.637 RSS26783RSS/(n?k?1)?0.613TSS/(n?1)R2?1?

(3)因为联合检验的F统计量为:

F?ESS/k

RSS/(n?k?1)根据以上信息,在给定显著性水平下,可检验两个解释变量对被解释变量的联合影响是否显著。

(4)不能。由于无法计算参数的t值。

9.(注意:本题的CES生产函数有误,其中的ln(K)2改为(lnK)2)

LL某地1981-2005年国内生产总值Y、生产资金K、从业人数L的统计数据如表3-6所示。

表3-6 某地1981—2005年的国内生产总值及相关数据

从业时生产 从业GDP 时生产 资金 人数 年份 GDP 间 资金 人数 年份 (亿间(万(亿元) 变(亿元) (万元) 变(亿元) 量 人) 量 人) 1981 123.6 1 1982 125.8 2 1983 128.5 3 486.7 386.4 1994 406.2 14 1500.8 456.3 512.5 391.2 1995 421.3 15 1523.7 461.1 521.8 396.1 1996 563.5 16 1657.8 465.4 40

1984 132.3 4 1985 138.3 5 1986 140.7 6 1987 147.2 7 1988 155.4 8 1989 167.0 9 532.9 401.9 1997 710.6 17 2378.5 470.2 550.3 406.3 1998 867.9 18 2903.7 473.9 581.9 410.8 1999 910.3 19 3106.7 479.4 589.3 414.9 2000 1025.4 20 3218.5 483.5 601.8 419.5 2001 1287.6 21 3827.6 489.1 631.9 421.0 2002 1328.1 22 4057.1 483.1 1990 180.1 10 655.1 425.6 2003 1409.1 23 4355.2 490.2 1991 213.7 11 667.3 429.7 2004 1582.3 24 4633.6 498.4 1992 309.9 12 1083.3 435.6 2005 1790.5 25 4897.4 510.1 1993 385.8 13 1358.9 451.2 2006 1925.7 26 5721.3 516.2 (1)估计C—D生产函数

Y?A0(1?r)tL?K?e? (2)估计线性化后的CES生产函数

1KlnY?lnA0?tln(1?r)?m?lnL?m(1??)lnK??m?(1??)(ln)2??2L

推算各个参数的估计值。

其中,各个参数的含义为:

A0——基期技术水平; r——技术进步率; t——为时间变量;

?——劳动的贡献份额; ?——资本的贡献份额; m——规模效益参数;

?——分布系数,反映劳动要素的密集程度,0???1; ?——替代参数,??1。

解答(1)C—D生产函数两边取对数,可得:

41

lnY?lnA0?ln(1?r)?t???lnL???lnK??

估计结果为: Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 5.09725 7.09089 0.719 0.4798 T 0.03217 0.01383 2.325 0.0297 * ln(L) -1.05635 1.20352 -0.878 0.3896 ln(K) 0.95463 0.05794 16.475 7.34e-14 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.05453 on 22 degrees of freedom Multiple R-squared: 0.9974, Adjusted R-squared: 0.997 F-statistic: 2774 on 3 and 22 DF, p-value: < 2.2e-16 于是,取对数后的C—D生产函数的样本回归方程为:

??5.09725?0.03217?t?1.05635?lnL?0.95463?lnK lnY据此可进一步求得原模型中的参数

A0?e5.09725?163.5714667r?e0.03217?1?0.032693048

原模型的估计结果为

Y?163.57(1?0.033)tL?1.05635K0.95463e?

(2)估计线性化后的CES生产函数

EViews估计结果为: Dependent Variable: LOG(Y) Method: Least Squares Date: 10/23/08 Time: 23:26

42

Sample: 1981 2006 Included observations: 26 Variable

Coeffic

Std. t-StatistProb. ient

Error

ic

C

5.63489.24390.60950.548

21

49

69

7

T 0.03300.01671.97300.061

07

29

47

8

LOG(L) -1.1571.6376-0.70690.487663

11

22

4

LOG(K) 0.96510.12677.61680.000

37

10

83

0

LOG(K/L)*LO-0.0030.0373-0.09380.926

G(K/L) 508

74

67

1 R-squared

0.9973 Mean

6.00664 dependent var

157 Adjusted 0.9968 S.D.

0.996R-squared 62 dependent var

194

S.E. of 0.0558 Akaike info -2.762

regression

02 criterion

956

43

Sum squared 0.0653 Schwarz resid

92 criterion

-2.521014 1986.622 0.000000

Log likelihood 40.918 F-statistic

43

Durbin-Watso1.8604 n stat

可见

19 Prob(F-statistic)

logA0?5.6348 log(1?r)?0.033 m???1.1577 m(1??)?0.9651 1?m?(1??)?0.00352

为此

A0?431121.816 r?0.079 m?0.1926 ??6.011 ???0.0012

(注:存在多重共线性问题,所以参数估计结果的经济意义不合理)

10.某商品的需求函数为

· lnYi?92.3?0.46lnX1i?0.18lnX2i (0.126) (0.032) (3.651) (?5.625)R2?0.983 R2?0.976 F?581

其中,Y为需求量,X1为消费者收入,X2为该商品价格。 (1)解释参数的经济意义。

(2)若价格上涨10%将导致需求如何变化?

(3)在价格上涨10%情况下,收入增加多少才能保持需求不变。

44

(4)解释模型中各个统计量的含义。

解答(1)由样本方程的形式可知,X1的参数为此商品的收入弹性,表示X2的参数为此商品的价格弹性。

(2)由弹性的定义知,如果其它条件不变,价格上涨10%,那么对此商品的需求量将下降1.8%。

(3)根据同比例关系,在价格上涨10%情况下,为了保持需求不变,收入需要增加0.46×0.018= 0.00828,即0.828%。 (4)第一行括弧里的数据0.126、0.032是参数估计量的样本标准差,第二行括弧里的数据3.651、-5.625是变量显著性检验的t值,t值较大,说明收入和价格对需求的影响显著.

R2、R2、 F分别是决定系数、调整的决定系数、方程显著性检验

的F值,这三个统计量的取值较大,说明模型的总体拟合效果较好。

11.表3-5给出了1960—1982年7个OECD国家的能源需求指数Y、实际GDP指数X1、能源价格指数X2,所有价格指数均以1973年为基准(1973年为100)。

表3-7 1960-1982年7个OECD国家的能源需求指数及相关数据

能源实际能源能源实际能源年份 需求GDP价格年份 需求GDP价格指数 指数 指数 指数 指数 指数 1960 54.1 54.1 111.9 1972 97.2 94.3 98.6 45

1961 55.4 1962 58.5 1963 61.7 1964 63.6 1965 66.8 1966 70.3 1967 73.5 1968 78.3 1969 83.3 1970 88.9 56.4 112.4 1973 100.0 100.0 100.0 59.4 111.1 1974 97.3 101.4 120.1 100.5 131.0 105.3 129.6 62.1 110.2 1975 93.5 65.9 109.0 1876 99.1 69.5 108.3 1877 100.9 109.9 137.7 73.2 105.3 1978 103.9 114.4 133.7 75.7 105.4 1979 106.9 118.3 144.5 79.9 104.3 1980 101.2 119.6 179.0 83.8 101.7 1981 98.1 86.2 97.7 1982 95.6 121.1 189.4 120.6 190.9 1971 91.8 89.8 100.3 资料来源:Organization for Economic Co-operation and Development

(1)建立能源需求的对数函数模型lnYi??0??1lnX1i??2lnX2i??i,解释各回归系数的意义,用P值检验各解释变量是否显著、方程是否显著。

(2)建立能源需求的线性函数模型Yi??0??1X1i??2X2i??i,解释各回归系数的意义,用P值检验各解释变量是否显著、方程是否显著。

(3)比较所建立的两个模型,如果两个模型的结论不同,你将选择哪个模型?为什么?根据你选定的模型,估计实际GDP指数为98.6、能源价格指数为121.5时能源需求指数的数值,构造该估计值的95%的置信区间。

解答(1)根据题意,建立能源需求的对数函数模型,回归结果如下:

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 1.54950 0.09011 17.20 1.89e-13 *** log(X1) 0.99692 0.01911 52.17 < 2e-16 *** log(X2) -0.33136 0.02431 -13.63 1.39e-11 *** ---

46

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.01801 on 20 degrees of freedom

Multiple R-squared: 0.9941, Adjusted R-squared: 0.9935 F-statistic: 1694 on 2 and 20 DF, p-value: < 2.2e-16

根据上面的结果,自由度为(3,20)的F统计量的P值小于2.2e-16,因此在给定显著性水平5%,从整体上看,样本方程总体上的线性关系是显著的。同理ln(X1)和ln(X2)两项参数估计量的P值小于0.05,所以在给定显著性水平5%,均通过变量显著性检验。

于是,样本回归方程为:

??1.55?0.997?ln(X)?0.331?ln(X) lnY12??0.997,根据回归结果,参数?说明在其他变量不变的条件下,1实际GDP指数每上升1%,就会使能源需求指数上升0.997%,与理论模型中描述的实际GDP指数与能源需求指数之间存在正

???0.331,相关关系相一致;参数?说明在其他变量不变的条件下,2能源价格指数每下降1%,就会使能源需求指数上升0.331%,与理论模型中描述的能源价格指数与能源需求指数之间存在负相关关系相一致,并且|??2|?1,这理论模型能源产品一般是缺乏弹性的相一致。

(2)根据题意,建立能源需求的线性函数模型,回归结果如下: Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 28.25506 1.42149 19.88 1.21e-14 *** X1 0.98085 0.01945 50.42 < 2e-16 *** X2 -0.25843 0.01528 -16.91 2.59e-13 *** ---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

47

Residual standard error: 1.435 on 20 degrees of freedom

Multiple R-squared: 0.9939, Adjusted R-squared: 0.9933 F-statistic: 1627 on 2 and 20 DF, p-value: < 2.2e-16

根据上面的结果,自由度为(3,20)的F统计量的P值小于2.2e-16,因此在给定显著性水平5%,从整体上看,样本方程总体上的线性关系是显著的。同理ln(X1)和ln(X2)两项参数的P值小于0.05,所以在给定显著性水平5%,均通过变量显著性检验。 于是,样本回归方程为:

??28.256?0.981?X?0.259?X Y12??0.981,根据回归结果,参数?说明在其他变量不变的条件下,1实际GDP指数每增加1,就会使能源需求指数上升0.981,与理论模型中描述的实际GDP指数与能源需求指数之间存在正相关

???0.259,说明在其他变量不变的条件下,能关系相一致;参数?2源价格指数每下降1,就会使能源需求指数上升0.259,与理论模型中描述的能源价格指数与能源需求指数之间存在负相关关系相一致。

(3)比较所建立的两个模型,两个模型均通过了方程和变量显著性检验,但是第一个模型的可决系数为0.9941,调整的可决系数为0.9935,比第二个模型都高;并且对数模型的系数有着特殊的经济含义,代表了弹性系数,所以如果两个模型的结论不同,将选择第一个模型。

根据所选定的模型,当估计实际GDP指数为98.6、能源价格指数为121.5时,代入到方程中,求得能源需求指数的预测值的

??93.31,进一步可算得其95%的置信区间为: 估计值Y0(89.77 , 96.99)

12.设定模型Yi??0??1X1i??2X2i??3X3i??i,研究我国“税收收入Y”受“国内生产总值X1”、“财政支出X2”、“商品零售价格指数X3”的影响,据《中国统计年鉴》得到的样本数据如表3-5所示。

表3-8 我国税收收入及相关数据 税收收国内生产总财政支商品零售入 年份 (亿值 出 价格指数(亿元) (亿元) (%) 元) 48

1978 519 3645 1122 100.7 1979 538 4063 1282 102.0 1980 572 4546 1299 106.0 1981 630 4892 1138 102.4 1982 700 5323 1230 101.9 1983 776 5963 1410 101.5 1984 947 7208 1701 102.8 1985 2041 9016 2004 108.8 1986 2091 10275 2205 106.0 1987 2140 12059 2262 107.3 1988 2390 15043 2491 118.5 1989 2727 16992 2824 117.8 1990 2822 18668 3084 102.1 1991 2990 21782 3387 102.9 1992 3297 26924 3742 105.4 1993 4255 35334 4642 113.2 1994 5127 48198 5793 121.7 1995 6038 60794 6824 114.8 1996 6910 71177 7938 106.1 1997 8234 78973 9234 100.8 1998 9263 84402 10798 97.4

49

1999 2000 2001 2002 2003 2004 10683 12582 15301 17636 20017 24166 88677 99215 10955 120333 135823 159878 13188 15887 18903 22053 24650 28487 97.0 98.5 99.2 98.7 99.9 102.8 2005 28779 183085 33930 100.8 (1)估计模型参数、随机误差项的方差。

(2)检验模型,包括经济意义检验、拟合优度检验、变量显著性检验、方程显著性检验。

解答(1)根据题意,建立线性函数模型,回归结果如下: Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) -3.757e+03 1.181e+03 -3.181 0.00402 ** X1 5.738e-03 3.233e-03 1.775 0.08863 . X2 8.124e-01 1.874e-02 43.343 < 2e-16 ***

X3 3.471e+01 1.101e+01 3.152 0.00432 ** ---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

50