A.10+p
B.2+p 2
C.2+p 12
D.2+p 4x2y28.ÒÑÖªF1,F2Ϊ˫ÇúÏßG:2-2=1(a>0)µÄ×ó¡¢ÓÒ½¹µã£¬PΪ˫ÇúÏßG×óÖ§ÉÏÒ»µã£¬Ö±ÏßPF1ÓëË«ÇúÏßGµÄÒ»Ìõ½¥
ab½üÏßƽÐУ¬PF1^PF2£¬Ôòa=( ) A.5
B.2
C.45
D.5
9.ÒÑÖªº¯Êýfx=2sinç÷wx+ç÷()æöèøp6
(w>0)ÔÚ(p,2p)Éϵ¥µ÷µÝ¼õ£¬ÔÚ(2p,3p)Éϵ¥µ÷µÝÔö£¬Ôòf(p)=( )
C.-1
D.3 A.1 B.2
i=1,2,¡,n£¬10.ÏÂͼÊÇÒ»¸ö³ÌÐò¿òͼ£¬ÆäÖÐai?{0,1ÇÒan=1£¬Ö´Ðд˳ÌÐò£¬µ±ÊäÈë110011ʱ£¬Êä³öbµÄֵΪ( ) }£¬
A.19
B.49
C.51
D.55
11.ÔÚÈýÀâ×µP-ABCÖУ¬µ×ÃæABCÊǵȱßÈý½ÇÐΣ¬²àÃæPABÊÇÖ±½ÇÈý½ÇÐΣ¬ÇÒPA=PB=2£¬µ±ÈýÀâ×µP-ABC±íÃæ»ý×î´óʱ£¬¸ÃÈýÀâ×µÍâ½ÓÇòµÄ±íÃæ»ýΪ( ) A.12p
B.8p
C.43p
D.
32p 312.Éèa=3£¬b=3log3p£¬c=plogp3£¬Ôòa,b,cµÄ´óС¹ØϵΪ( ) A.a
B.a C.c 17 D.c ¶þ¡¢Ìî¿ÕÌ⣨ÿÌâ5·Ö£¬Âú·Ö20·Ö£¬½«´ð°¸ÌîÔÚ´ðÌâÖ½ÉÏ£© ¨¬x-y?0??13.Èôx,yÂú×ãÔ¼ÊøÌõ¼þ¨ªx+y-2?0£¬Ôòz=x-2yµÄ×î´óÖµÊÇ ???3x-y+2?014.ƽÐÐËıßÐÎABCDÖУ¬AB=5£¬AD=3£¬BA+BC=4£¬ÔòAB?BC . . x2y215.ÒÑÖªÍÖÔ²C:2+2=1(a>b>0)µÄ½¹¾àΪ2c£¬Ô²M:x2+y2-2cy=0ÓëÍÖÔ²C½»ÓÚA,BÁ½µã£¬Èô abOA^OB(OΪ×ø±êÔµã)£¬ÔòÍÖÔ²CµÄÀëÐÄÂÊΪ . 16.ÔÚÊýÁÐ{an}ÖУ¬a1=-1£¬a2=2£¬a4=8£¬SnΪÊýÁÐ{an}µÄÇ°nÏîºÍ£¬Èô{Sn+l}ΪµÈ±ÈÊýÁУ¬Ôòl= . Èý¡¢½â´ðÌâ £¨±¾´óÌâ¹²6СÌ⣬¹²70·Ö.½â´ðӦд³öÎÄ×Ö˵Ã÷¡¢Ö¤Ã÷¹ý³Ì»òÑÝËã²½Öè.£© 17.¡÷ABCµÄÄÚ½ÇA,B,CµÄ¶Ô±ß·Ö±ðΪa,b,c£¬ÒÑÖª3ccosB-(1)ÇóC£» (2)Èôc=7£¬a,b,c³ÉµÈ²îÊýÁУ¬Çó¡÷ABCµÄÃæ»ý. 18.Èçͼ£¬ÔÚËÄÀâ×µP-ABCDÖУ¬µ×ÃæABCDÊDZ߳¤Îª4µÄÕý·½ÐΣ¬Æ½ÃæPCD^ƽÃæABCD£¬¶þÃæ½ÇP-AD-CΪ30¡ã£¬PC=2. 3a=bsinC. (1)ÇóÖ¤£ºPD^ƽÃæPBC£» (2)Çó¶þÃæ½ÇA-PB-CµÄÓàÏÒÖµ. 19.¸ßÌú¡¢¹º¡¢Òƶ¯Ö§¸¶ºÍ¹²Ïíµ¥³µ±»ÓþΪÖйúµÄ¡°ÐÂËÄ´ó·¢Ã÷¡±£¬ÕÃÏÔ³öÖйúʽ´´ÐµÄÇ¿¾¢»îÁ¦£¬Ä³Òƶ¯Ö§¸¶¹«Ë¾ÔÚÎÒÊÐËæ»ú³éÈ¡ÁË100ÃûÒƶ¯Ö§¸¶Óû§½øÐе÷²é£¬µÃµ½ÈçÏÂÊý¾Ý£º ÿÖÜÒƶ¯Ö§¸¶´ÎÊý ÄÐ Å® ºÏ¼Æ 4 6 10 3 5 8 3 4 7 7 4 11 8 6 14 30 20 50 1´Î 2´Î 3´Î 4´Î 5´Î 6´Î¼°ÒÔÉÏ (1) Èç¹ûÈÏΪÿÖÜʹÓÃÒƶ¯Ö§¸¶³¬¹ý3´ÎµÄÓû§¡°Ï²»¶Ê¹ÓÃÒƶ¯Ö§¸¶¡±£¬ÄÜ·ñÔÚ·¸´íÎó¸ÅÂʲ»³¬¹ý0.05µÄÇ°ÌáÏ£¬ÈÏ 18 ΪÊÇ·ñ¡°Ï²»¶Ê¹ÓÃÒƶ¯Ö§¸¶¡±ÓëÐÔ±ðÓйأ¿ (2) ÿÖÜʹÓÃÒƶ¯Ö§¸¶6´Î¼°6´ÎÒÔÉϵÄÓû§³ÆΪ¡°Òƶ¯Ö§¸¶´ïÈË¡±£¬ÊÓƵÂÊΪ¸ÅÂÊ£¬ÔÚÎÒÊÐËùÓС°Òƶ¯Ö§¸¶´ïÈË¡± ÖУ¬Ëæ»ú³éÈ¡4ÃûÓû§£¬ (i) Çó³éÈ¡µÄ4ÃûÓû§ÖУ¬¼ÈÓÐÄС°Òƶ¯Ö§¸¶´ïÈË¡±ÓÖÓÐÅ®¡°Òƶ¯Ö§¸¶´ïÈË¡±µÄ¸ÅÂÊ£» (ii) ΪÁ˹ÄÀøÅ®ÐÔÓû§Ê¹ÓÃÒƶ¯Ö§¸¶£¬¶Ô³é³öµÄÅ®¡°Òƶ¯Ö§¸¶´ïÈË¡±Ã¿È˽±Àø500Ôª£¬¼Ç½±Àø×Ü ½ð¶îΪX£¬ÇóXµÄÊýѧÆÚÍû. ¸½±í¼°¹«Ê½£º n(ad-bc)K2= a+bc+da+cb+d()()()()PK23K0 0.15 2()0.10 2.706 20.05 3.841 0.025 5.024 0.010 6.635 0.005 7.879 0.001 10.828 k0 2.072 20.ÒÑÖªFΪÅ×ÎïÏßE£ºx=4yµÄ½¹µã£¬¹ýµãP2,0×÷Á½Ìõ»¥Ïà´¹Ö±µÄÖ±Ïßm,n£¬Ö±Ïßm½»EÓÚ²»Í¬µÄÁ½µãA,B£¬Ö±Ïßn½»EÓÚ²»Í¬µÄÁ½µãC,D£¬¼ÇÖ±ÏßmµÄбÂÊΪk. (1)ÇókµÄÈ¡Öµ·¶Î§£» (2)ÉèÏ߶ÎAB,CDµÄÖеã·Ö±ðΪµãM,N£¬ÇóÖ¤£º¡ÏMFNΪ¶Û½Ç. 21.ÒÑÖªº¯Êýfx=exsinx-ax2. (1)ÇóÇúÏßy=fxÔÚµã0,f0(2)Èôfx30ÔÚÇø¼äêú0, ()()()(())´¦µÄÇÐÏß·½³Ì£» ()éùp ÉϺã³ÉÁ¢£¬ÇóaµÄÈ¡Öµ·¶Î§. êú2ëû 22.ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÍÖÔ²C¹ØÓÚ×ø±êÖá¶Ô³Æ£¬ÒÔ×ø±êÔµãOΪ¼«µã£¬ÒÔxÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ æö3p£¬B23,0ΪÍÖÔ²CÉÏÁ½µã. Aç÷ç÷6,èø4()(1)ÇóÖ±ÏßOAµÄÖ±½Ç×ø±ê·½³ÌÓëÍÖÔ²CµÄ²ÎÊý·½³Ì£» (2)ÈôµãMÔÚÍÖÔ²CÉÏ£¬ÇÒµãMÔÚµÚÒ»ÏóÏÞÄÚ£¬ÇóËıßÐÎOAMBÃæ»ýSµÄ×î´óÖµ. 23.ÒÑÖªº¯Êýfx=x+1-x-1£¬gx=x+ax-2. (1)µ±a=3ʱ£¬Çó²»µÈʽfx3gxµÄ½â¼¯£» (2)Èô²»µÈʽfx3gxµÄ½â¼¯°üº¬-1,1£¬ÇóaµÄÈ¡Öµ·¶Î§. 19 ()()2()()()()[]²Î¿¼´ð°¸ Ò»£®Ñ¡ÔñÌ⣺ A¾í£ºDBCBA CDAAC AB B¾í£ºDBCCA BDAAC AB ¶þ£®Ìî¿ÕÌ⣺ £¨13£©1 £¨14£©9 £¨15£© 5£1 2 £¨16£© 1 »ò3 3 Èý£®½â´ðÌ⣺ £¨17£©½â£º£¨¢ñ£©ÓÉ3ccosB£3a£½bsinC¼°ÕýÏÒ¶¨ÀíµÃ£¬ 3sinCcosB£3sinA£½sinBsinC£¬ ÒòΪsinA£½sin(B£«C)£½sinBcosC£«sinCcosB£¬ ËùÒÔ£3sinBcosC£½sinBsinC£® ÒòΪsinB¡Ù0£¬ËùÒÔtanC£½£3£¬ 2 ÒòΪC¡Ê(0£¬¦Ð)£¬ËùÒÔC£½£® 3 £¨¢ò£©ÓÉa£¬b£¬c³ÉµÈ²îÊýÁеÃ2b£½a£«c£¬ ÓÖc£½7£¬ËùÒÔa£½2b£7£® 222 ÓÉÓàÏÒ¶¨ÀíµÃc£½a£«b£«ab£¬ 222 ËùÒÔ(2b£7)£«b£«(2b£7)b£½49£¬ÕûÀíµÃb£5b£½0£¬½âµÃb£½5£® ËùÒÔa£½3£¬ ¹ÊS¡÷ABC£½ 1 3153 ¡Á3¡Á5¡Á£½£® 224 ¡ £¨18£©½â£º£¨¢ñ£©ÒòΪƽÃæPCD¡ÍƽÃæABCD£¬ ÇÒƽÃæPCD¡ÉƽÃæABCD£½CD£¬AD¡ÍCD£¬ ËùÒÔAD¡ÍƽÃæPCD£¬ÓÖPDƽÃæPCD£¬ ÔòPD¡ÍAD£¬ ËùÒÔ¡ÏPDC¼´Îª¶þÃæ½ÇP-AD-CµÄƽÃæ½Ç£¬ ¡ÏPDC£½30¡ã£¬ ÔÚ¡÷PDCÖУ¬ÓÉÓàÏÒ¶¨Àí¿ÉµÃPD£½23£¬ 222 ËùÒÔPD£«PC£½CD£¬´Ó¶øÓÐPD¡ÍPC£¬ ÓÖÒòΪPD¡ÍAD£¬AD¡ÎBC£¬ ËùÒÔPD¡ÍBC£® ÓÖÒòΪPC¡ÉBC£½C£¬ ËùÒÔPD¡ÍƽÃæPBC£® £¨¢ò£©ÒÔDΪԵ㣬½¨Á¢ÈçͼËùʾµÄ¿Õ¼äÖ±½Ç×ø±êϵD£xyz£¬ ÔòD(0£¬0£¬0)£¬A(4£¬0£¬0)£¬B(4£¬4£¬0)£¬C(0£¬4£¬0)£¬P(0£¬3£¬3)£¬ 20