(¸ßÈýÀí¿ÆÊýѧÊÔ¾í8·ÝºÏ¼¯)ºþÄÏÊ¡ÕżҽçÊÐ2018-2019ѧÄê¸ßÈýÉÏѧÆÚÆÚÄ©Àí¿ÆÊýѧÊÔ¾íº¬´ð°¸ ÏÂÔر¾ÎÄ

A.10+p

B.2+p 2

C.2+p 12

D.2+p 4x2y28.ÒÑÖªF1,F2Ϊ˫ÇúÏßG:2-2=1(a>0)µÄ×ó¡¢ÓÒ½¹µã£¬PΪ˫ÇúÏßG×óÖ§ÉÏÒ»µã£¬Ö±ÏßPF1ÓëË«ÇúÏßGµÄÒ»Ìõ½¥

ab½üÏßƽÐУ¬PF1^PF2£¬Ôòa=( ) A.5

B.2

C.45

D.5

9.ÒÑÖªº¯Êýfx=2sinç÷wx+ç÷()æöèøp6

(w>0)ÔÚ(p,2p)Éϵ¥µ÷µÝ¼õ£¬ÔÚ(2p,3p)Éϵ¥µ÷µÝÔö£¬Ôòf(p)=( )

C.-1

D.3 A.1 B.2

i=1,2,¡­,n£¬10.ÏÂͼÊÇÒ»¸ö³ÌÐò¿òͼ£¬ÆäÖÐai?{0,1ÇÒan=1£¬Ö´Ðд˳ÌÐò£¬µ±ÊäÈë110011ʱ£¬Êä³öbµÄֵΪ( ) }£¬

A.19

B.49

C.51

D.55

11.ÔÚÈýÀâ×µP-ABCÖУ¬µ×ÃæABCÊǵȱßÈý½ÇÐΣ¬²àÃæPABÊÇÖ±½ÇÈý½ÇÐΣ¬ÇÒPA=PB=2£¬µ±ÈýÀâ×µP-ABC±íÃæ»ý×î´óʱ£¬¸ÃÈýÀâ×µÍâ½ÓÇòµÄ±íÃæ»ýΪ( ) A.12p

B.8p

C.43p

D.

32p 312.Éèa=3£¬b=3log3p£¬c=plogp3£¬Ôòa,b,cµÄ´óС¹ØϵΪ( ) A.a

B.a

C.c

17

D.c

¶þ¡¢Ìî¿ÕÌ⣨ÿÌâ5·Ö£¬Âú·Ö20·Ö£¬½«´ð°¸ÌîÔÚ´ðÌâÖ½ÉÏ£©

¨¬x-y?0??13.Èôx,yÂú×ãÔ¼ÊøÌõ¼þ¨ªx+y-2?0£¬Ôòz=x-2yµÄ×î´óÖµÊÇ

???3x-y+2?014.ƽÐÐËıßÐÎABCDÖУ¬AB=5£¬AD=3£¬BA+BC=4£¬ÔòAB?BC

.

.

x2y215.ÒÑÖªÍÖÔ²C:2+2=1(a>b>0)µÄ½¹¾àΪ2c£¬Ô²M:x2+y2-2cy=0ÓëÍÖÔ²C½»ÓÚA,BÁ½µã£¬Èô

abOA^OB(OΪ×ø±êÔ­µã)£¬ÔòÍÖÔ²CµÄÀëÐÄÂÊΪ .

16.ÔÚÊýÁÐ{an}ÖУ¬a1=-1£¬a2=2£¬a4=8£¬SnΪÊýÁÐ{an}µÄÇ°nÏîºÍ£¬Èô{Sn+l}ΪµÈ±ÈÊýÁУ¬Ôòl=

.

Èý¡¢½â´ðÌâ £¨±¾´óÌâ¹²6СÌ⣬¹²70·Ö.½â´ðӦд³öÎÄ×Ö˵Ã÷¡¢Ö¤Ã÷¹ý³Ì»òÑÝËã²½Öè.£© 17.¡÷ABCµÄÄÚ½ÇA,B,CµÄ¶Ô±ß·Ö±ðΪa,b,c£¬ÒÑÖª3ccosB-(1)ÇóC£»

(2)Èôc=7£¬a,b,c³ÉµÈ²îÊýÁУ¬Çó¡÷ABCµÄÃæ»ý.

18.Èçͼ£¬ÔÚËÄÀâ×µP-ABCDÖУ¬µ×ÃæABCDÊDZ߳¤Îª4µÄÕý·½ÐΣ¬Æ½ÃæPCD^ƽÃæABCD£¬¶þÃæ½ÇP-AD-CΪ30¡ã£¬PC=2.

3a=bsinC.

(1)ÇóÖ¤£ºPD^ƽÃæPBC£» (2)Çó¶þÃæ½ÇA-PB-CµÄÓàÏÒÖµ.

19.¸ßÌú¡¢¹º¡¢Òƶ¯Ö§¸¶ºÍ¹²Ïíµ¥³µ±»ÓþΪÖйúµÄ¡°ÐÂËÄ´ó·¢Ã÷¡±£¬ÕÃÏÔ³öÖйúʽ´´ÐµÄÇ¿¾¢»îÁ¦£¬Ä³Òƶ¯Ö§¸¶¹«Ë¾ÔÚÎÒÊÐËæ»ú³éÈ¡ÁË100ÃûÒƶ¯Ö§¸¶Óû§½øÐе÷²é£¬µÃµ½ÈçÏÂÊý¾Ý£º ÿÖÜÒƶ¯Ö§¸¶´ÎÊý ÄÐ Å® ºÏ¼Æ 4 6 10 3 5 8 3 4 7 7 4 11 8 6 14 30 20 50 1´Î 2´Î 3´Î 4´Î 5´Î 6´Î¼°ÒÔÉÏ (1) Èç¹ûÈÏΪÿÖÜʹÓÃÒƶ¯Ö§¸¶³¬¹ý3´ÎµÄÓû§¡°Ï²»¶Ê¹ÓÃÒƶ¯Ö§¸¶¡±£¬ÄÜ·ñÔÚ·¸´íÎó¸ÅÂʲ»³¬¹ý0.05µÄÇ°ÌáÏ£¬ÈÏ

18

ΪÊÇ·ñ¡°Ï²»¶Ê¹ÓÃÒƶ¯Ö§¸¶¡±ÓëÐÔ±ðÓйأ¿

(2) ÿÖÜʹÓÃÒƶ¯Ö§¸¶6´Î¼°6´ÎÒÔÉϵÄÓû§³ÆΪ¡°Òƶ¯Ö§¸¶´ïÈË¡±£¬ÊÓƵÂÊΪ¸ÅÂÊ£¬ÔÚÎÒÊÐËùÓС°Òƶ¯Ö§¸¶´ïÈË¡±

ÖУ¬Ëæ»ú³éÈ¡4ÃûÓû§£¬

(i) Çó³éÈ¡µÄ4ÃûÓû§ÖУ¬¼ÈÓÐÄС°Òƶ¯Ö§¸¶´ïÈË¡±ÓÖÓÐÅ®¡°Òƶ¯Ö§¸¶´ïÈË¡±µÄ¸ÅÂÊ£» (ii)

ΪÁ˹ÄÀøÅ®ÐÔÓû§Ê¹ÓÃÒƶ¯Ö§¸¶£¬¶Ô³é³öµÄÅ®¡°Òƶ¯Ö§¸¶´ïÈË¡±Ã¿È˽±Àø500Ôª£¬¼Ç½±Àø×Ü

½ð¶îΪX£¬ÇóXµÄÊýѧÆÚÍû.

¸½±í¼°¹«Ê½£º

n(ad-bc)K2=

a+bc+da+cb+d()()()()PK23K0 0.15 2()0.10 2.706 20.05 3.841 0.025 5.024 0.010 6.635 0.005 7.879 0.001 10.828 k0 2.072 20.ÒÑÖªFΪÅ×ÎïÏßE£ºx=4yµÄ½¹µã£¬¹ýµãP2,0×÷Á½Ìõ»¥Ïà´¹Ö±µÄÖ±Ïßm,n£¬Ö±Ïßm½»EÓÚ²»Í¬µÄÁ½µãA,B£¬Ö±Ïßn½»EÓÚ²»Í¬µÄÁ½µãC,D£¬¼ÇÖ±ÏßmµÄбÂÊΪk. (1)ÇókµÄÈ¡Öµ·¶Î§£»

(2)ÉèÏ߶ÎAB,CDµÄÖеã·Ö±ðΪµãM,N£¬ÇóÖ¤£º¡ÏMFNΪ¶Û½Ç. 21.ÒÑÖªº¯Êýfx=exsinx-ax2. (1)ÇóÇúÏßy=fxÔÚµã0,f0(2)Èôfx30ÔÚÇø¼äêú0,

()()()(())´¦µÄÇÐÏß·½³Ì£»

()éùp

ÉϺã³ÉÁ¢£¬ÇóaµÄÈ¡Öµ·¶Î§.

êú2ëû

22.ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÍÖÔ²C¹ØÓÚ×ø±êÖá¶Ô³Æ£¬ÒÔ×ø±êÔ­µãOΪ¼«µã£¬ÒÔxÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬

æö3p£¬B23,0ΪÍÖÔ²CÉÏÁ½µã. Aç÷ç÷6,èø4()(1)ÇóÖ±ÏßOAµÄÖ±½Ç×ø±ê·½³ÌÓëÍÖÔ²CµÄ²ÎÊý·½³Ì£»

(2)ÈôµãMÔÚÍÖÔ²CÉÏ£¬ÇÒµãMÔÚµÚÒ»ÏóÏÞÄÚ£¬ÇóËıßÐÎOAMBÃæ»ýSµÄ×î´óÖµ. 23.ÒÑÖªº¯Êýfx=x+1-x-1£¬gx=x+ax-2. (1)µ±a=3ʱ£¬Çó²»µÈʽfx3gxµÄ½â¼¯£»

(2)Èô²»µÈʽfx3gxµÄ½â¼¯°üº¬-1,1£¬ÇóaµÄÈ¡Öµ·¶Î§.

19

()()2()()()()[]²Î¿¼´ð°¸

Ò»£®Ñ¡ÔñÌ⣺

A¾í£ºDBCBA CDAAC AB B¾í£ºDBCCA BDAAC AB ¶þ£®Ìî¿ÕÌ⣺ £¨13£©1

£¨14£©9

£¨15£©

5£­1

2

£¨16£©

1

»ò3 3

Èý£®½â´ðÌ⣺

£¨17£©½â£º£¨¢ñ£©ÓÉ3ccosB£­3a£½bsinC¼°ÕýÏÒ¶¨ÀíµÃ£¬ 3sinCcosB£­3sinA£½sinBsinC£¬

ÒòΪsinA£½sin(B£«C)£½sinBcosC£«sinCcosB£¬ ËùÒÔ£­3sinBcosC£½sinBsinC£® ÒòΪsinB¡Ù0£¬ËùÒÔtanC£½£­3£¬

2

ÒòΪC¡Ê(0£¬¦Ð)£¬ËùÒÔC£½£®

3

£¨¢ò£©ÓÉa£¬b£¬c³ÉµÈ²îÊýÁеÃ2b£½a£«c£¬ ÓÖc£½7£¬ËùÒÔa£½2b£­7£®

222

ÓÉÓàÏÒ¶¨ÀíµÃc£½a£«b£«ab£¬

222

ËùÒÔ(2b£­7)£«b£«(2b£­7)b£½49£¬ÕûÀíµÃb£­5b£½0£¬½âµÃb£½5£® ËùÒÔa£½3£¬ ¹ÊS¡÷ABC£½

1 3153

¡Á3¡Á5¡Á£½£® 224

¡­

£¨18£©½â£º£¨¢ñ£©ÒòΪƽÃæPCD¡ÍƽÃæABCD£¬

ÇÒƽÃæPCD¡ÉƽÃæABCD£½CD£¬AD¡ÍCD£¬ ËùÒÔAD¡ÍƽÃæPCD£¬ÓÖPDƽÃæPCD£¬ ÔòPD¡ÍAD£¬

ËùÒÔ¡ÏPDC¼´Îª¶þÃæ½ÇP-AD-CµÄƽÃæ½Ç£¬ ¡ÏPDC£½30¡ã£¬

ÔÚ¡÷PDCÖУ¬ÓÉÓàÏÒ¶¨Àí¿ÉµÃPD£½23£¬

222

ËùÒÔPD£«PC£½CD£¬´Ó¶øÓÐPD¡ÍPC£¬ ÓÖÒòΪPD¡ÍAD£¬AD¡ÎBC£¬ ËùÒÔPD¡ÍBC£®

ÓÖÒòΪPC¡ÉBC£½C£¬

ËùÒÔPD¡ÍƽÃæPBC£® £¨¢ò£©ÒÔDΪԭµã£¬½¨Á¢ÈçͼËùʾµÄ¿Õ¼äÖ±½Ç×ø±êϵD£­xyz£¬

ÔòD(0£¬0£¬0)£¬A(4£¬0£¬0)£¬B(4£¬4£¬0)£¬C(0£¬4£¬0)£¬P(0£¬3£¬3)£¬

20