脉冲编码调制PCM原理 下载本文

PCM原理与在电力通信中的应用

PCM(Pulse Code Modulation) 脉码调制是实现语音信号数字化的一种方法。是对模拟

信号数字化的取样技术,将模拟语音信号变换为数字信号的编码方式,特别是对于音频信号。PCM 对信号每秒钟取样 8000 次;每次取样为 8 个位,总共 64 kbps。取样等级的编码有二种标准。北美洲及日本使用 Mu-Law 标准,而其它大多数国家使用 A-Law 标准。

一.PCM基本工作原理

数字程控调度机PCM脉码调制就是把一个时间连续、取值连续的模拟信号变换成时间离散、

取值离散的数字信号后在信道中传输。脉码调制就是对模拟信号先抽样,再对样值幅度量化、编码的过程,国际标准化的PCM码组(电话语音)是用八位码组代表一个抽样值。编码后的PCM码组,经数字信道传输,在接收端,用二进制码组重建模拟信号,在解调过程中,一般采用抽样保持电路。预滤波是为了把原始语音信号的频带限制在300-3400Hz左右,所以预滤波会引入一定的频带失真。 1 抽样 (Samping)

抽样是把模拟信号以其信号带宽2倍以上的频率提取样值,变为在时间轴上离散的抽样信号的过程。例如,话音信号带宽被限制在0.3~3.4kHz内,用8kHz的抽样频率(fs),就可获得能取代原来连续话音信号的抽样信号。对一个正弦信号进行抽样获得的抽样信号是一个脉冲幅度调制(PAM)信号。对抽样信号进行检波和平滑滤波,即可还原出原来的模拟信号。

抽样必须遵循奈奎斯特抽样定理,离散信号才可以完全代替连续信号。低通连续信号抽样定

理内容:一个频带限制在 赫内的时间连续信号 ,若以 的间隔对它进行等间隔抽样,则 将被所得到的抽样值完全确定。语音信号经过抽样变成一种脉冲幅度调制(PAM)信号。

取样是应注意以下几点:a取样矩形脉冲要尽量窄,尽可能接近瞬时取样过程;b为了保证在接受端能满意的恢复出信息,取样速率必须大于最高频率的两倍;c为了使输出的信息成为合格的信息限带信号,在取样以前,先经过一个上限为W的低通滤波器,以便)(tm中所包含的高于W的那些谐波成分。 2 量化(quantizing)

把幅度连续变化的模拟量变成用有限位二进制数字表示的数字量的过程称为量化。即:抽样信号虽然是时间轴上离散的信号,但仍然是模拟信号,其样值在一定的取值范围内,可有无

限多个值。显然,对无限个样值一一给出数字码组来对应是不可能的。为了实现以数字码表示样值,必须采用“四舍五入”的方法把样值分级“取整”,使一定取值范围内的样值由无限多个值变为有限个值。

量化后的抽样信号与量化前的抽样信号相比较,当然有所失真,且不再是模拟信号。这种量化失真在接收端还原模拟信号时表现为噪声,并称为量化噪声。量化噪声的大小取决于把样值分级“取整”的方式,分的级数越多,即量化级差或间隔越小,量化噪声也越小。

量化误差:量化后的信号和抽样信号的差值。量化误差在接收端表现为噪声,称为量化噪声。

量化级数越多误差越小,相应的二进制码位数越多,要求传输速率越高,频带越宽。 为使量化噪声尽可能小而所需码位数又不太多,通常采用非均匀量化的方法进行量化。 非均匀量化根据幅度的不同区间来确定量化间隔,幅度小的区间量化间隔取得小,幅度大的区间量化间隔取得大。

量化的方法有许多种。像均匀量化和非均匀量化。均匀量化,其量阶是常数,根据这种量化进行的编码叫“线性编码”相应的译码叫“线性译码。”至于量阶的取值,则需根据具体情况来看,原则是保证通信的质量要求。但是,在电话通信中,均匀量化是不合适的。 因为在均匀量化中的量阶的大小是不变的,与输入的样值大小无关。这样,当输入大信号时和输入小信号时的量化噪声都一样大,如果满足对小信号信扰比的要求则大信号的信扰比就显得太低了。反之,如果满足大信号的要求,则对小信号就显得过剩,造成不必要的浪费。所以必须使用量阶数值比固定,而是随输入值的大小变化。所以对这样的信号必须使用“非均匀量化器”,其特点是:输入小时,量阶也小;输入大时,量阶也大。这样在整个输入信号的变化范围内得到几乎一样的信扰比,而总的量阶可比均匀量化是还小。因此,缩短了码字的长度,提高了通信效率。非均匀量化就是对信号的不同部分用不同的量化间隔,具体地说,就是对小信号部分采用较小的量化间隔,而对大信号部分就用较大的量化间隔。实现这种思路的一种方法就是压缩与扩张法。压缩的概念是这样的:在抽样电路后面加上一个叫做压缩器的信号处理电路,该电路的特点是对弱小信号有比较大的放大倍数(增益),而对大信号的增益却比较小。抽样后的信号经过压缩器后就发生了“畸变”,大信号部分没有得到多少增益,而弱小信号部分却得到了“不正常”的放大(提升),相比之下,大信号好像被压缩了,压缩器由此得名。对压缩后的信号再进行均匀量化,就相当于对抽样信号进行了非均匀量化。

非均匀量化的实现方法有两种:一种是北美和日本采用的μ律压扩,一种是欧洲和我国采

用的A律压扩。

在PCM-30/32通信设备中,采用A律13折线的分段方法,具体是:Y轴均匀分为8段,

每段均匀分为16份,每份表示一个量化级,则Y轴一共有16×8=128个量化级。;X轴采用非均匀划分来实现非均匀量化的目的,划分规律是每次按二分之一来进行分段。由于分成128个量化级,故有7位二进制码(27=128),又因为Y轴有正值和负值之分,需加一位极性码,故共有8位二进制码。 3 编码(Coding)

量化后的抽样信号在一定的取值范围内仅有有限个可取的样值,且信号正、负幅度分布的对称性使正、负样值的个数相等,正、负向的量化级对称分布。若将有限个量化样值的绝对值从小到大依次排列,并对应地依次赋予一个十进制数字代码(例如,赋予样值0的十进制数字代码为0),在码前以“+”、“-”号为前缀,来区分样值的正、负,则量化后的抽样信号就转化为按抽样时序排列的一串十进制数字码流,即十进制数字信号。简单高效的数据系统是二进制码系统,因此,应将十进制数字代码变换成二进制编码。根据十进制数字代码的总个数,可以确定所需二进制编码的位数,即字长。这种把量化的抽样信号变换成给定字长的二进制码流的过程称为编码。

话音PCM的抽样频率为8kHz,每个量化样值对应一个8位二进制码,故话音数字编码信号的速率为8bits×8kHz=64kb/s。量化噪声随量化级数的增多和级差的缩小而减小。量化级数增多即样值个数增多,就要求更长的二进制编码。因此,量化噪声随二进制编码的位数增多而减小,即随数字编码信号的速率提高而减小。自然界中的声音非常复杂,波形极其复杂,通常我们采用的是脉冲代码调制编码,即PCM编码。PCM通过抽样、量化、编码三个步骤将连续变化的模拟信号转换为数字编码。

在实际的PCM设备中,量化和编码是一起进行的。通信中采用高速编码方式。 编码器分为逐次反馈型、折叠级联型和混合型三种,在 PCM-30/32通信设备中通常采用逐次反馈型的编码器。

二、 时分复用

所谓时分复用,是将某一信道按时间加以分割,各路信号的抽样。值依一定的顺序占用某

一时间间隔(也成时隙),即多路信号利用同一信道在不同的时间进行各自独立的传输。 时分复用的特点:

1 复用设备内部各通路的部件基本通用

2 要求收、发两端同时工作,要求有良好的同步系统。

时分复用的目的:一个信道传输多路信号,即若干路信号可以采用时分复用方式以一定的

结构形式复接成一路高速率的复合数字信号-群路信号。 数字复接包括bit复接和码组复接。

PCM-30/32路通信设备是采用码组复接的时分复用系统。

在30/32路PCM系统中,帧结构中第一个时隙TS0用于传送帧同步信号,TS16用于传送话路信令,故只有30个时隙用于传送话音信号,所以只能提供30个话路。当采用共路信令传送方式时,必须将16帧再构成一个更大的帧,称为复帧。复帧的重复频率为500Hz,周期为2ms。

目前数字电话都采用PCM方式。对PCM系统,国际上采用PDH(准同步)复接技术。此技术有两种制式,一种是北美和日本采用的24路话音信号复接成一个基群的T制,速率是1554kbit/s;一种是欧洲和我国采用的30/32路话音信号复接成一个基群的E制,速率为2048kbit/s。为了进一步提高信道利用率,国际电联规定四个基群复接成一个二次群,四个二次群复接成一个三次群,四个三次群复接成一个四次群。

三.PCM在电力通信中的典型应用

电力调度网是电力系统通信专网的最主要和最重要的组成部分,该网络构建了一个包括连接

各供电所、变电站、调度中心等机构在内的通信专网,其主流组网技术采用SDH传输和PCM接入实现全网的业务接入和传输。电力专用通信网作为电力建设中的支撑和保障系统,不仅承担着电力系统的生产指挥和调度,同时也为行政管理和自动化信息传输提供服务。

1、传统PCM话音接入: 近交换机端配置FXO接口卡与程控交换机相连,远端通过FXS接口卡与远端电话机相连,通过传输设备的E1接口接入,实现两个站点间的语音通话

FXO:Foreign Exchange Office外部交换局、语音环路中继接口 功能:用户话音信号与ST-BUS 64K数字信号的相互转换;用户线状态信号与数字信令码之间的相互转换。 理解:FXO相当于一个电话,接局端。 FXS:Foreign Exchange Station外部交换站、用户模拟接口(电话线) 功能:向电话用户馈电;过压和过流保护;被叫时向用户送铃流;监视用户摘挂机状态;实现语音到64K数字信号的相互转换,数字信令到线路状态之间的转换。FXS必须与FXO配合使用。 理解:相当于程控交换接口,有馈电,可以直接接电话。 注意:FXO、FXS可以用于自动电话、共电电话、计费电话等用途.

2、多业务接入混传 实现传统的话音及热线等语音业务,同时根据用户要求还可选装V.24、V.35、64K同向等数据接口卡。多种业务同时占用一个或几个E1接口,实现数据和话音