电源结构剖析 - 图文 下载本文

变压器之前的全部电路称作初级(或者一次侧)而变压器之后的称作次级(或者二次侧)。

配备有源PFC的电源不需要110V/220V切换开关以及倍压电路。

在没有PFC的电源中,如果输入电压设置为110V,输入电压接入倍压器电路,使输入整流桥的交流电压保持在220V左右。

PC电源上的高速开关由一对功率MOSFET管(或者BJT双极型晶体管)构成,实际上逆变级还有几种不同的组成方式,我们稍后会讨论到这一点。

加在变压器一次侧的电压是方波,因而变压器二次侧输出电压是方波而非正弦波。

PWM控制电路——通常是一颗集成电路芯片——与一次侧通过一个小变压器(驱动变压器)隔离开。有时不使用变压器而使用光耦(一个很小的带有LED和光敏二极管的IC)进行隔离。

前面我们提到,PWM控制电路参考电源的输出电压来确定如何控制开关管的开关。如果输出电压有偏离,PWM控制电路改变驱动开关管的波形(改变占空比)来修正输出电压。

下一页我们将通过图片来研究电源的每一级电路,告诉你在电源中何处能找到它们。 PC电源的内部

当你第一次打开电源外壳(此时不要将电源线连接在上面,否则你会被电到)时,你可能对电源内什么电路在哪里毫无头绪。但你至少可以一眼注意到两个很容易识别的东西:电源风扇以及一些散热片。

一台(低端)PC电源的内部

但你应该很容易识别出哪些元件是一次侧,哪些是二次侧。

你会看到一个(在配备有源PFC的电源上)或两个(在无PFC的电源上)大号的电解电容,找到它,就找到了一次侧。

注:关于输入端电解电容的配置方式有几种常见情况。

对于无PFC或无源PFC电源而言,由于需要倍压输入电路,一般使用两个200V左右的大电容串联

的接法。对于有源PFC电源,由于不需要倍压输入电路,一般就使用一颗400V左右的电容。

但是对于有源PFC电源而言,虽然不需要两颗电容组成倍压输入电路,也有可能使用两颗200V电容串联的方案,比如航嘉和Topower的一些电源(宽幅王二代之类),可能是基于与低端型号共用一套方案的考虑。

定位一次侧与二次侧 像这张所显示的,通常PC电源在两个大号散热片之间会有三个变压器。主开关变压器是最大的那个。中等体积的变压器(待机变压器)用来产生+5Vsb输出(属于线性电源),而最小的变压器(驱动变压器)用于PWM控制电路,用来隔离二次侧和一次侧电路(这也就是为什么在图3和图4上这一变压器被标为“隔离器”)。在一些电源里不使用变压器作为隔离器,而使用一个或几个光耦(它们看上去就像小IC),所以在这些电源里你可能只找到两个变压器。关于这一点我们后面会更深入讨论。

一个散热片属于一次侧,而另一个散热片属于二次侧。

在一次侧散热片上你能找到主开关管,如果电源配备了有源PFC电路,还包括PFC开关管和配套的快恢复二极管。一些厂商会将有源PFC元件放在一个独立的散热片上,在这些电源里你在一次侧找到两个散热片。

在二次侧散热片上你能找到若干个整流管。它们看上去像三极管但事实上它们内部是两个封装在一起的整流用功率二极管。

你还会发现一些属于输出滤波级的小号的电解电容与线圈——找到它们你就找到了二次侧。

一个确定一次侧与二次侧更简单的办法是沿着电源的输入输出接线寻找。输出的接线组连接在二次侧而输入接线连接在一次侧。

下面我们就开始讨论在每一级电路里能找到的元件。

瞬变滤波电路PC电源的第一级电路是瞬变滤波电路(也称为EMI滤波器)。下图是一个推荐的瞬变滤波电路原理图。

注:瞬变滤波电路不仅能保护电源及设备不受市电突波的侵害,也能抑制开关电源产生的传导骚扰窜入

市电。在交流输入端的这一组电路实际上是两级,一级负责交流滤波而一级负责抑制电压突波。因为交流滤波电路的元件同样对电压瞬变有抑制作用,所以也可以视为瞬变抑制电路的一部分。

下面这张电路图当中,两个电感采用不同接法分别起到共模与差模干扰抑制作用,C3和C1、C2的作用下面会讲到。

推荐的二级LC瞬变滤波电路

这里我们说“推荐的”是因为很多电源——尤其是廉价电源——不会做上图中的全部元件。所以一个区分电源优劣的简便方法就是检查它的瞬变滤波电路是否完整地做上了全部推荐的元件。

一个主要元件叫做MOV(Metal Oxide Varistor,金属氧化物压敏电阻)或压敏电阻,在电路图上标为RV1,负责抑制市电的电压尖峰(瞬变)。这个元件同样被用在浪涌抑制器上。问题在于,廉价电源为了节省成本不会搭载这一元件。对于搭载了MOV的电源,市电接入的浪涌抑制器就不是必需了,因为电源内部已经有一个瞬变抑制器件。

注:瞬变抑制器件除了压敏电阻以外,还有输出瞬态抑制二极管(Transient protection diode)和充气式电涌放电器(Gas-filled surge arrester)。它们各有优缺点,没有一个瞬变抑制器件能接近理想要求,实际使用当中是严格地设计使其相互配合,尽可能涵盖所有应用场合的。

L1和L2是铁氧体线圈。C1和C2是扁平形状的电容,通常为蓝色,也被称作“Y电容”。C3是金属化聚酯膜电容,通常容量为100nF(纳法)、470nF或680nF,也称作“X电容”。有的电源配备了第二颗X电容,并联在交流输入火线和零线之间,位于图中RV1的位置。

注:Y电容负责滤除共模干扰,X电容负责滤除差模干扰。它们都属于安规电容。下面引用一篇来自dianyuan.com的介绍X电容与Y电容的文章——

在交流电源输入端,一般需要增加3个安全电容来抑制EMI传导干扰。 交流电源输入分为3个端子:火线(L)/零线(N)/地线(G)。在火线和地线之间以及在零线和地线之间并接的电容,一般统称为Y电容。 这两个Y电容连接的位置比较关键,必须需要符合相关安全标准, 以防引起电子设备漏电或机壳带电,容易危及人身安全及生命。它们都属于安全电容,从而要求电容值不能偏大,而耐压必须较高。一般情况下,工作在亚热带的机器,要求对地漏电电流不能超过0.7mA;工作在温带机器,要求对地漏电电流不能超过0.35mA。因此,Y电容的总容量一般都不能超过4700PF(472)。 特别指出:作为安全电容的Y电容,要求必须取得安全检测机构的认证。Y电容外观多为橙色或蓝色,一般都标有安全认证标志(如UL、CSA等标识)和耐压AC250V或AC275V字样。然而,其真正的直流耐压高达5000V以上。 必须强调,Y电容不得随意使用标称耐压AC250V或者DC400V之类的普通电容来代用。 在火线和零线之间并联的电容,一般称之为X电容。由于这个电容连接的位置也比较关键,同样需要符合相关安全标准。X电容同样也属于安全电容之一。根据实际需要,X电容的容值允许比Y电容的容值大,但此时必须在X电容的两端并联一个安全电阻,用于防止电源线拔插时,由于该电容的充放电过程而致电源线插头长时间带电。安全标准规定,当正在工作之中的机器电源线被拔掉时,在两秒钟内,电源线插头两端带电的电压(或对地电位)必须小于原来额定工作电压的30%。 作为安全电容之一的X电容,也要求必须取得安全检测机构的认证。X电容一般都标有安全认证标志和耐压

AC250V或AC275V字样,但其真正的直流耐压高达2000V以上,使用的时候不要随意使用标称耐压AC250V

或者DC400V之类的的普通电容来代用。 通常,X电容多选用纹波电流比较大的聚脂薄膜类电容。这种类型的电容,体积较大,但其允许瞬间充放电的电流也很大,而其内阻相应较小。普通电容纹波电流的指标都很低,动态内阻较高。用普通电容代替X电容,除了电容耐压无法满足标准之外,纹波电流指标也难以符合要求。

X电容是并联在市电输入火、零之间的任何电容,Y电容是成对出现的,需要串联连接到火、零之间并将两个电容的中点接地,也就是连接到电源外壳上,因而对于市电输入而言它们是并联的。

瞬变滤波电路不止滤除市电当中的电压瞬变,也防止开关管产生的噪音传导到市电当中对其它用电设备造成干扰。

让我们来看一些实际的例子。注意下图,看到什么奇怪的东西么?这个电源根本没有瞬变滤波电路!这是一个廉价的所谓“普通”电源。如果注意看你会看到电源PCB上印刷着滤波器件的安装位置,那里本该有元件但现在空着。

这个廉价的“普通电源”根本没有瞬变滤波级

下面这个图中你可以看到一个廉价电源的瞬变滤波电路。可以看出,MOV不见了,而线圈只有一个(L2线圈缺失)。另一方面这个电源市电端有一个额外的X电容(对应图8中RV1的位置)。