ºþ±±¹¤Òµ´óѧÉÌóѧԺ±ÏÒµÉè¼Æ
plot?real?p?,imag?p?,'x'? %»¼«µã plot?real?q?,imag?q?,'o'? %»Áãµã title?'pole?zero diagram for discrete system'?
hold off
ÉÏÊö³ÌÐòÖУ¬´«Èë²ÎÁ¿AºÍB·Ö±ðÊÇÒª»æÖÆÁ㼫µãͼµÄϵͳº¯ÊýµÄ·ÖĸºÍ·Ö×Ó¶àÏîʽµÄϵÊýÏòÁ¿¡£
3.2 ÓÃMATLABʵÏÖÀëɢϵͳµÄƵÂÊÌØÐÔ·ÖÎö
ÀëɢϵͳµÄ·ùÆµÌØÐÔÇúÏߺÍÏàÆµÌØÐÔÇúÏßÖ±¹ÛµØ·´Ó³ÁËϵͳ¶Ô²»Í¬ÆµÂʵÄÊäÈëÐòÁеĴ¦ÀíÇé¿ö¡£Òò´Ë£¬ÎÒÃÇÖ»ÒªÖªµÀÀëɢϵͳµÄƵÂÊÏìÓ¦H(ejw)£¬¾Í¿É·ÖÎöÀëɢϵͳµÄÕû¸öƵÂÊÌØÐÔ¡£ÄÇô£¬ÈçºÎÇóµÃÀëɢϵͳµÄƵÂÊÏìÓ¦H(ejw)ÄØ£¿×î¼ò±ãµÄ·½·¨¾ÍÊÇͨ¹ýϵͳº¯ÊýH(z)µÄ·ÖÎö¶øµÃµ½ÏµÍ³µÄƵÂÊÏìÓ¦H(ejw)£¬Í¨³£²ÉÓÃÈçÏ·ÖÎö·½·¨¼´Ö±½Ó·¨£º
ÉèijÀëɢϵͳµÄϵͳº¯ÊýΪH(z)£¬Ôò¸ÃϵͳµÄƵÂÊÏìӦΪ
H(ejw)?|H(ejw)|?ej?(w)?H(z)|z?ejw £¨3-2£©
MATLABΪÓû§ÌṩÁËרÃÅÓÃÓÚÇóÀëɢϵͳƵÂÊÏìÓ¦µÄº¯Êýfreqz( )£¬µ÷Óô˺¯ÊýÓÐÈçÏÂÁ½ÖÖ¸ñʽ£º
£¨1£©[H£¬w]?freqz?B,A, N?
ÔÚÉÏÊöµ÷ÓÃÖУ¬BºÍA·Ö±ðÊÇ´ý·ÖÎöµÄÀëɢϵͳµÄϵͳº¯Êý·Ö×Ó¡¢·Öĸ¶àÏîʽµÄϵÊýÏòÁ¿£¬NΪÕýÕûÊý£¬·µ»ØÏòÁ¿HÔò°üº¬ÁËÀëɢϵͳƵÂÊÏìÓ¦H(ejw)ÔÚ0~?·¶Î§ÄÚN¸öƵÂʵȷֵãµÄÖµ£¬ÏòÁ¿wÔò°üº¬0~?·¶Î§ÄÚµÄN ¸öƵÂʵȷֵ㡣µ÷ÓÃÖÐÈôNȱʡ£¬ÔòϵͳĬÈÏN=512¡£
ÀýÈ磬¶ÔÈçÏÂÀëɢϵͳ
H(z)=z?0.5 £¨3-3£© zÔò¼ÆËãÆä0~? ƵÂÊ·¶Î§ÄÚ10¸öƵÂʵȷֵãµÄƵÂÊÏìÓ¦H(ejw)µÄÑùÖµµÄMATLABÃüÁîΪ£º
A ??1 0?; B ??1 ?0.5?;
?H,w??freqz?B,A, 10?
ÔËÐнá¹ûΪ H = 0.5000
18
ºþ±±¹¤Òµ´óѧÉÌóѧԺ±ÏÒµÉè¼Æ
0.5245 + 0.1545i 0.5955 + 0.2939i 0.7061 + 0.4045i 0.8455 + 0.4755i 1.0000 + 0.5000i 1.1545 + 0.4755i 1.2939 + 0.4045i 1.4045 + 0.2939i 1.4755 + 0.1545i w = 0 0.3142 0.6283 0.9425 1.2566 1.5708 1.8850 2.1991 2.5133 2.8274
£¨2£©[H£¬w]?freqz?B,A, N,'whole'?
¸Ãµ÷Óøñʽ½«¼ÆËãÀëɢϵͳÔÚake (k )??·¶Î§ÄÚN¸öƵÂʵȷֵãµÄƵÂÊÏìÓ¦H(ejw)µÄÖµ¡£Òò´Ë£¬ÎÒÃÇ¿ÉÒÔÏȵ÷ÓÃfreqz()º¯Êý¼ÆËã³öÀëɢϵͳƵÂÊÏìÓ¦µÄÖµ£¬È»ºóÔÙÀûÓÃMATLABµÄabs()ºÍangle()º¯Êý¼°plotÃüÁ¼´¿É»æÖƳöϵͳÔÚ0~?»ò0~2?·¶Î§ÄڵķùÆµÌØÐÔºÍÏàÆµÌØÐÔÇúÏß¡£ÀýÈç,¶ÔÓÚʽ£¨3-3£©Ëùʾϵͳ£¬»æÖÆÏµÍ³·ùÆµÌØÐÔºÍÏàÆµÌØÐÔÇúÏßµÄMATLAB ÃüÁîÈçÏ£º
B??1 ?0.5?; A ??1 0?;
?H,w??freqz(B,A,400,'whole');
19
ºþ±±¹¤Òµ´óѧÉÌóѧԺ±ÏÒµÉè¼Æ
Hf?abs?H?; Hx?angle?H?;
Clf
figure?1? plot?w,Hf?
title(¡®Àëɢϵͳ·ùÆµÌØÐÔÇúÏß¡¯)
figure?2? plot?w,Hx?
title(¡®ÀëɢϵͳÏàÆµÌØÐÔÇúÏß¡¯)
¸Ã³ÌÐò»æÖƵÄϵͳƵÂÊÌØÐÔÇúÏßÈçͼ 3¡ª1ºÍ3¡ª2Ëùʾ¡£
Àëɢϵͳ·ùÆµÌØÐÔÇúÏß1.510.502468
ͼ3¡ª1Àëɢϵͳ·ùÆµÌØÐÔÇúÏß
ÀëɢϵͳÏàÆµÌØÐÔÇúÏß10.50-0.5-102468
ͼ3¡ª2ÀëɢϵͳÏàÆµÌØÐÔÇúÏß
´Ó¸ÃϵͳµÄ·ùÆµÌØÐÔÇúÏß¿ÉÒÔ¿´³ö£¬¸Ãϵͳ³Ê¸ßÍ¨ÌØÐÔ£¬ÊÇÒ»½×¸ßͨÂ˲¨Æ÷¡£
20
ºþ±±¹¤Òµ´óѧÉÌóѧԺ±ÏÒµÉè¼Æ
3.3 ÄæZ±ä»»¼°MATLABʵÏÖ
ÀëɢϵÁÐf?k?µÄZ±ä»»¾ßÓÐÈçÏÂÒ»°ãÐÎʽ£º
MF(z)?B(z)?A(z)jbz?j?azii?1j?0N £¨3-4£©
iÈôf?k?Ϊµ¥±ßÐòÁУ¬¼´µ±k?0ʱf?k??0£¬ÔòÆäZ±ä»»µÄÊÕÁ²ÓòӦΪ|z|?p0£¬ÇÒ°üÀ¨z??,¹Ê´ËʱF?z?µÄ·Ö×Ó¶àÏîʽµÄ×îÃݴβ»ÄܸßÓÚ·Öĸ¶àÏîʽµÄ×î¸ßÃݴΣ¬¼´Âú×ã
M?N¡£
ÓëÀÆÕÀË¹Äæ±ä»»ÏàÀàËÆ£¬ÄæZ±ä»»Ò²¿ÉÒÔÓɲ¿·Ö·Öʽչ¿ª·¨À´ÇóµÃ¡£µ«Òª×¢ÒâµÄÊÇ£¬ÀëÉ¢ÐźŵĻù±¾ÐòÁÐÊÇÖ¸ÊýÐòÁÐake(k)£¬ÆäZ±ä»»Îªz/(z?a),Òò´ËÔÚÇóÄæZ±ä»»Ê±£¬Í¨³£²¢²»ÊÇÖ±½ÓÕ¹¿ªF?z?£¬¶øÊǶÔF?z?/z½øÐÐÕ¹¿ª¡£
ÉèijÀëÉ¢ÐòÁÐµÄ Z±ä»»Îªf?k?£¬Ôò
F(z)B(z)??zA(z)B(z)N £¨3-5£©
i?(z?p)i?1ÆäÖÐpi(i?1,2¡¡,N)ΪF?z?/zµÄN¸ö¼«µã¡£ÈôÉÏʽÂú×ãM?N£¬Ôò¿É¶ÔÆäÖ±½Ó½øÐв¿·Ö·Öʽչ¿ªµÃ£º
rrrF(z)?1?2?¡¡+N zz?p1z?p2z?pNri?(z?pi)?F(z),z?pi,(i?1,2,¡¡N) z³ÆÎªÓÐÀíº¯ÊýF?z?/zµÄÁôÊý¡£
ÏÖ·ÖÁ½ÖÖÇé¿ö½øÐÐÌÖÂÛ£º
£¨1£©F?z?µÄËùÓм«µãΪµ¥Êµ¼«µã£¬´Ëʱ£¬
F?z??ÔòF( z)µÄÄæZ±ä»»Ó¦Îª
rzr1zrz?2?¡¡?N z?p1z?p2z?pNf(k)??ri(pi)ke(k)
N¿É¼ûµ±F?z?µÄËùÓм«µãΪµ¥Êµ¼«µãʱ£¬Æä¶ÔÓ¦ÐòÁÐf?k?ΪÈô¸É¸öÓÉF?z?¼«µãλÖþö¶¨µÄÖ¸ÊýÐòÁÐÖ®ºÍ¡£
i?1
21