È˽̰æ°ËÄê¼¶´º¼¾Ô¤¿Æ×ÊÁÏ ÏÂÔØ±¾ÎÄ

7.ÒÑÖªÖ±ÏßmÓëÖ±Ïßy=2x+1µÄ½»µãµÄºá×ø±êΪ2£¬ÓëÖ±Ïßy=-x+2?µÄ½»µãµÄ×Ý×ø±êΪ1£¬ÇóÖ±ÏßmµÄº¯Êý¹ØÏµÊ½£®

8.Æû³µÓÉÌì½òÊ»ÍùÏà¾à120ǧÃ׵ı±¾©£¬£Ó£¨Ç§Ã×£©±íʾÆû³µÀ뿪Ìì½òµÄ¾àÀ룬t£¨Ð¡Ê±£©±íʾÆû³µÐÐÊ»µÄʱ¼ä£®ÈçͼËùʾ

1¡¢Æû³µÓü¸Ð¡Ê±¿Éµ½´ï±±¾©£¿ËÙ¶ÈÊǶàÉÙ£¿

2¡¢Æû³µÐÐÊ»£±Ð¡Ê±£¬À뿪Ìì½òÓжàÔ¶£¿

3¡¢µ±Æû³µ¾à±±¾©20ǧÃ×ʱ£¬Æû³µ³ö·¢Á˶೤ʱ¼ä£¿

9.ͼ11£­30±íʾ¼×¡¢ÒÒÁ½ÃûÑ¡ÊÖÔÚÒ»´Î×ÔÐгµÔ½Ò°ÈüÖУ¬Â·³Ìy£¨Ç§Ã×£©ËæÊ±¼äx£¨·Ö£©±ä»¯µÄͼÏó£¨È«³Ì£©£¬¸ù¾ÝͼÏ󻨴ðÏÂÁÐÎÊÌ⣮

£¨1£©µ±±ÈÈü¿ªÊ¼¶àÉÙ·Öʱ£¬Á½È˵ÚÒ»´ÎÏàÓö£¿ £¨2£©Õâ´Î±ÈÈüÈ«³ÌÊǶàÉÙǧÃ×£¿

£¨3£©µ±±ÈÈü¿ªÊ¼¶àÉÙ·Öʱ£¬Á½È˵ڶþ´ÎÏàÓö£¿

10.£¨1£©Í¼3ÖУ¬±íʾһ´Îº¯Êýy?mx?nÓëÕý±ÈÀýº¯Êýy?mx(m¡¢nÊdz£Êý£¬ÇÒm?0,n?0)µÄͼÏóµÄÊÇ£¨ £©

29

(2)¡¢Ö±Ïßy?kx?b¾­¹ýÒ»¡¢¶þ¡¢ËÄÏóÏÞ£¬ÔòÖ±Ïßy?bx?kµÄͼÏóÖ»ÄÜÊÇͼ4Öеģ¨ £©

Î塢ʵսÑÝÁ· 1¡¢ ÏÂÁк¯ÊýÖУ¬ÊÇÒ»´Îº¯ÊýµÄÓÐ_____________£¬ÊÇÕý±ÈÀýº¯ÊýµÄÓÐ______________ £¨1£©y??8x £¨2£©y?£¨5£©y??82 £¨3£©y?5x?6 £¨4£©y??0.5x?1 xx £¨6£©y?2(x?3) £¨7£©y?4?3x

22¡¢Èôº¯Êýy?(b?3)x?b?9ÊÇÕý±ÈÀýº¯Êý£¬Ôòb = _________ 3¡¢Ò»´Îº¯Êýy?2x?5µÄͼÏñ²»¾­¹ý£¨ £©

A¡¢µÚÒ»ÏóÏÞ B¡¢µÚ¶þÏóÏÞ C¡¢ µÚÈýÏëÏóÏÞ D¡¢ µÚËÄÏóÏÞ 4¡¢ÒÑÖªÖ±Ïßy?kx?b²»¾­¹ýµÚÈýÏóÏÞ£¬Ò²²»¾­¹ýÔ­µã£¬ÔòÏÂÁнáÂÛÕýÈ·µÄÊÇ( ) A¡¢k?0,b?0 B¡¢k?0,b?0 C¡¢k?0,b?0 D¡¢k?0,b?0 5¡¢ÏÂÁк¯ÊýÖУ¬yËæxµÄÔö´ó¶øÔö´óµÄÊÇ£¨ £©

A¡¢y??3x B¡¢y?2x?1 C¡¢y??3x?10 D¡¢y??2x?1

6¡¢¶ÔÓÚÒ»´Îº¯Êýy?(3k?6)x?k£¬º¯ÊýÖµyËæxµÄÔö´ó¶ø¼õС£¬ÔòkµÄȡֵ·¶Î§ÊÇ£¨ £© A¡¢k?0 B¡¢k??2 C¡¢k??2 D¡¢?2?k?0 7¡¢Ò»´Îº¯Êýy?3x?1µÄͼÏñÒ»¶¨¾­¹ý£¨ £©

A¡¢£¨3£¬5£© B¡¢£¨-2£¬3£© C¡¢£¨2£¬7£© D¡¢£¨4¡¢10£©

8¡¢ÒÑÖªÕý±ÈÀýº¯Êýy?kx(k?0)µÄº¯ÊýÖµyËæxµÄÔö´ó¶øÔö´ó£¬ÔòÒ»´Îº¯Êýy?kx?kµÄͼÏñ´óÖÂÊÇ£¨ £©

ABC30 D

(µÚ9Ìâ) 9¡¢Ò»´Îº¯Êýy?kx?bµÄͼÏñÈçͼËùʾ£¬Ôòk_______£¬ b_______£¬yËæxµÄÔö´ó¶ø_________

10¡¢Ò»´Îº¯Êýy??x?2µÄͼÏñ¾­¹ý___________ÏóÏÞ£¬yËæxµÄÔö´ó¶ø_________ 11¡¢ÒÑÖªµã£¨-1£¬a£©¡¢£¨2£¬b£©ÔÚÖ±Ïßy?3x?8 ÉÏ£¬Ôòa£¬bµÄ´óС¹ØÏµÊÇ__________

12¡¢Ö±Ïßy?2x?3ÓëxÖá½»µã×ø±êΪ__________£»ÓëyÖá½»µã×ø±ê_________£»Í¼Ïñ¾­¹ý__________ÏóÏÞ£¬yËæxµÄÔö´ó¶ø____________£¬Í¼ÏñÓë×ø±êÖáËùΧ³ÉµÄÈý½ÇÐεÄÃæ»ýÊÇ___________ 13¡¢ÒÑÖªÒ»´Îº¯ÊýµÄͼÏñ¾­¹ýµã£¨3£¬5£©Ó루2£¬3£©£¬ÇóÕâ¸öÒ»´Îº¯ÊýµÄ½âÎöʽ¡£ 14¡¢ÒÑÖªÒ»´Îº¯Êýy?kx?2£¬µ±x = 5ʱ£¬y = 4£¬

£¨1£©ÇóÕâ¸öÒ»´Îº¯Êý¡£ £¨2£©Çóµ±x??2ʱ£¬º¯ÊýyµÄÖµ¡£

15¡¢ÒÑÖªÖ±Ïßy?kx?b¾­¹ýµã£¨9£¬0£©ºÍµã£¨24£¬20£©£¬ÇóÕâÌõÖ±Ïߵĺ¯Êý½âÎöʽ¡£

16¡¢ÒÑÖªÒ»´Îº¯ÊýµÄͼÏóÈçͼËùʾ£¬Çó³öËüµÄº¯Êý¹ØÏµÊ½

17¡¢ÒÑÖªÒ»´Îº¯ÊýµÄͼÏóÈçͼËùʾ£¬Çó³öËüµÄº¯Êý¹ØÏµÊ½

Áù¡¢ÄÜÁ¦ÌáÉý

yo-32xy2-1o1x-41£®ÒÑÖªyÓëx+3³ÉÕý±ÈÀý£¬²¢ÇÒx=1ʱ£¬y=8£¬ÄÇôyÓëxÖ®¼äµÄº¯Êý¹ØÏµÊ½Îª£¨ £© £¨A£©y=8x £¨B£©y=2x+6 £¨C£©y=8x+6 £¨D£©y=5x+3 2£®ÈôÖ±Ïßy=kx+b¾­¹ýÒ»¡¢¶þ¡¢ËÄÏóÏÞ£¬ÔòÖ±Ïßy=bx+k²»¾­¹ý£¨ £© £¨A£©Ò»ÏóÏÞ £¨B£©¶þÏóÏÞ £¨C£©ÈýÏóÏÞ £¨D£©ËÄÏóÏÞ

31

3£®Ö±Ïßy=-2x+4ÓëÁ½×ø±êÖáΧ³ÉµÄÈý½ÇÐεÄÃæ»ýÊÇ£¨ £© £¨A£©4 £¨B£©6 £¨C£©8 £¨D£©16

5£®Éèb>a£¬½«Ò»´Îº¯Êýy=bx+aÓëy=ax+bµÄͼÏó»­ÔÚÍ¬Ò»Æ½ÃæÖ±½Ç×ø±êϵÄÚ£¬?ÔòÓÐÒ»×éa£¬bµÄȡֵ£¬Ê¹µÃÏÂÁÐ4¸öͼÖеÄÒ»¸öΪÕýÈ·µÄÊÇ£¨ £©

6£®ÈôÖ±Ïßy=kx+b¾­¹ýÒ»¡¢¶þ¡¢ËÄÏóÏÞ£¬ÔòÖ±Ïßy=bx+k²»¾­¹ýµÚ£¨ £©ÏóÏÞ£®

£¨A£©Ò» £¨B£©¶þ £¨C£©Èý £¨D£©ËÄ

7£®µ±-1¡Üx¡Ü2ʱ£¬º¯Êýy=ax+6Âú×ãy<10£¬Ôò³£ÊýaµÄȡֵ·¶Î§ÊÇ£¨ £© £¨A£©-4

£¨A£©µÚÒ»ÏóÏÞ £¨B£©µÚ¶þÏóÏÞ £¨C£©µÚÈýÏóÏÞ £¨D£©µÚËÄÏóÏÞ 9£®ÒªµÃµ½y=-

33x-4µÄͼÏñ£¬¿É°ÑÖ±Ïßy=-x£¨ £©£® 22 £¨A£©Ïò×óÆ½ÒÆ4¸öµ¥Î» £¨B£©ÏòÓÒÆ½ÒÆ4¸öµ¥Î» £¨C£©ÏòÉÏÆ½ÒÆ4¸öµ¥Î» £¨D£©ÏòÏÂÆ½ÒÆ4¸öµ¥Î»

10£®Èôº¯Êýy=£¨m-5£©x+£¨4m+1£©x2£¨mΪ³£Êý£©ÖеÄyÓëx³ÉÕý±ÈÀý£¬ÔòmµÄֵΪ£¨ £© £¨A£©m>-

11 £¨B£©m>5 £¨C£©m=- £¨D£©m=5 4411£®ÈôÖ±Ïßy=3x-1Óëy=x-kµÄ½»µãÔÚµÚËÄÏóÏÞ£¬ÔòkµÄȡֵ·¶Î§ÊÇ£¨ £©£® £¨A£©k<

111 £¨B£©1 £¨D£©k>1»òk< 33312£®¹ýµãP£¨-1£¬3£©Ö±Ïߣ¬Ê¹ËüÓëÁ½×ø±êÖáΧ³ÉµÄÈý½ÇÐÎÃæ»ýΪ5£¬?ÕâÑùµÄÖ±Ïß¿ÉÒÔ×÷£¨ £© £¨A£©4Ìõ £¨B£©3Ìõ £¨C£©2Ìõ £¨D£©1Ìõ

13.Èçͼ£¬Á½Ö±Ïßy1?kx?bºÍy2?bx?kÔÚÍ¬Ò»×ø±êϵÄÚͼÏóµÄλÖÿÉÄÜÊÇ£¨ £©

32