°ËÄê¼¶ÊýѧÉϲḴϰÌá¸Ù
µÚ11Õ ÊýµÄ¿ª·½ ¡ì11.1ƽ·½¸ùÓëÁ¢·½¸ù
Ò»¡¢Æ½·½¸ù
1¡¢Æ½·½¸ùµÄ¶¨Ò壺Èç¹ûÒ»¸öÊýµÄƽ·½µÈÓÚa£¬ÄÇôÕâ¸öÊý½Ð×öaµÄƽ·½¸ù¡££¨Ò²½Ð×ö¶þ´Î·½¸ù£©
¼´£ºÈôx2=a£¬Ôòx½Ð×öaµÄƽ·½¸ù¡£
2¡¢Æ½·½¸ùµÄÐÔÖÊ£º£¨1£©Ò»¸öÕýÊýÓÐÁ½¸öƽ·½¸ù¡£ËüÃÇ»¥ÎªÏà·´Êý£»£¨2£©ÁãµÄƽ·½¸ùÊÇÁ㣻£¨3£©¸ºÊýûÓÐÆ½·½¸ù¡£
¶þ¡¢ËãÊõƽ·½¸ù
1¡¢ËãÊõƽ·½¸ùµÄ¶¨Ò壺ÕýÊýaµÄÕýµÄƽ·½¸ù£¬½Ð×öaµÄËãÊõƽ·½¸ù¡£ 2¡¢ËãÊõƽ·½¸ùµÄÐÔÖÊ£º£¨1£©Ò»¸öÕýÊýµÄËãÊõƽ·½¸ùÖ»ÓÐÒ»¸öÇÒΪÕý£»£¨2£©ÁãµÄËãÊõƽ·½¸ùÊÇÁ㣻£¨3£©¸ºÊýûÓÐËãÊõƽ·½¸ù£»£¨4£©ËãÊõƽ·½¸ùµÄ·Ç¸ºÐÔ£ºa¡Ý0¡£
Èý¡¢Æ½·½¸ùºÍËãÊõƽ·½¸ùÊǼǺţºÆ½·½¸ù¡Àa£¨¶Á×÷£ºÕý¸º¸ùºÅa£©£»ËãÊõƽ·½¸ùa£¨¶Á×÷¸ùºÅa£©
¼´£º¡°¡Àa¡±±íʾaµÄƽ·½¸ù£¬»òÕß±íʾÇóaµÄƽ·½¸ù£»¡°a¡±±íʾaµÄËãÊõƽ·½¸ù£¬»òÕß±íʾÇóaµÄËãÊõƽ·½¸ù¡£
ÆäÖÐa½Ð×ö±»¿ª·½Êý¡£¡ß¸ºÊýûÓÐÆ½·½¸ù£¬¡à±»¿ª·½Êýa±ØÐëΪ·Ç¸ºÊý£¬¼´£ºa¡Ý0¡£
ËÄ¡¢¿ªÆ½·½£ºÇóÒ»¸ö·Ç¸ºÊýµÄƽ·½¸ùµÄÔËË㣬½Ð×ö¿ªÆ½·½¡£ÆäʵÖʾÍÊÇ£ºÒÑÖªÖ¸ÊýºÍ¶þ´ÎÃÝÇóµ×ÊýµÄÔËËã¡£
Îå¡¢Á¢·½¸ù
1¡¢Á¢·½¸ùµÄ¶¨Ò壺Èç¹ûÒ»¸öÊýµÄÁ¢·½µÈÓÚa£¬ÄÇôÕâ¸öÊý½Ð×öaµÄÁ¢·½¸ù¡££¨Ò²½Ð×öÈý´Î·½¸ù£©
¼´£ºÈôx3=a£¬Ôòx½Ð×öaµÄÁ¢·½¸ù¡£
2¡¢Á¢·½¸ùµÄÐÔÖÊ£º£¨1£©Ò»¸öÕýÊýµÄÁ¢·½¸ùΪÕý£»£¨2£©Ò»¸ö¸ºÊýµÄÁ¢·½¸ùΪ¸º£»£¨3£©ÁãµÄÁ¢·½¸ùÊÇÁã¡£
3¡¢Á¢·½¸ùµÄ¼ÇºÅ£º3a£¨¶Á×÷£ºÈý´Î¸ùºÅa£©£¬a³ÆÎª±»¿ª·½Êý£¬¡°3¡±³ÆÎª¸ùÖ¸Êý¡£
3aÖеı»¿ª·½ÊýaµÄȡֵ·¶Î§ÊÇ£ºaΪȫÌåʵÊý¡£
Áù¡¢¿ªÁ¢·½£ºÇóÒ»¸öÊýµÄÁ¢·½¸ùµÄÔËË㣬½Ð×ö¿ªÁ¢·½¡£ÆäʵÖʾÍÊÇ£ºÒÑÖªÖ¸ÊýºÍÈý´ÎÃÝÇóµ×ÊýµÄÔËËã¡£
Æß¡¢×¢ÒâÊÂÏ 1¡¢¡°¡Àa¡±¡¢¡°a¡±¡¢¡°3a¡±µÄʵÖÊÒâÒ壺¡°¡Àa¡±¡úÎÊ£ºÄĸöÊýµÄƽ·½ÊÇa£»¡°a¡±¡úÎÊ£ºÄĸö·Ç¸ºÊýµÄƽ·½ÊÇa£»¡°3a¡±¡úÎÊ£ºÄĸöÊýµÄÁ¢·½ÊÇa¡£
2¡¢×¢ÒâaºÍ3aÖеÄaµÄȡֵ·¶Î§µÄÓ¦Óá£
È磺Èôx?3ÓÐÒâÒ壬Ôòxȡֵ·¶Î§ÊÇ ¡££¨¡ßx-3¡Ý0£¬¡àx¡Ý3£©
1
£¨Ìx¡Ý3£©
Èô3?x2009ÓÐÒâÒ壬Ôòxȡֵ·¶Î§ÊÇ ¡££¨ÌȫÌåʵÊý£© 3¡¢3?a??3a¡£È磺¡ß3?27??3£¬?327??3£¬¡à3?27??327
4¡¢¶ÔÓÚ¼¸¸öËãÊýƽ·½¸ù±È½Ï´óС£¬±»¿ª·½ÊýÔ½´ó£¬ÆäËãÊýƽ·½¸ùµÄÖµÒ²Ô½´ó¡£
È磺10?7?6?5?2µÈ¡£23ºÍ32Ôõô±È½Ï´óС£¿£¨ÄãÖªµÀÂ𣿲»ÖªµÀ¾ÍÎÊ£¡£¡£¡£¡£¡£¡£¡£©
5¡¢ËãÊýƽ·½¸ùȡֵ·¶Î§µÄÈ·¶¨·½·¨£º¹Ø¼ü£ºÕÒÁÚ½üµÄ¡°Íêȫƽ·½ÊýµÄËãÊýƽ·½¸ù¡±×÷²ÎÕÕ¡£
È磺ȷ¶¨7µÄȡֵ·¶Î§¡£¡ß4£¼7£¼9£¬¡à2£¼7£¼3¡£ 6¡¢¼¸¸ö³£¼ûµÄËãÊýƽ·½¸ùµÄÖµ£º2?1.414£¬3?1.732£¬5?2.236£¬6?2.449£¬7?2.646¡£
°Ë¡¢²¹³äµÄ¶þ´Î¸ùʽµÄ²¿·ÖÄÚÈÝ
1¡¢¶þ´Î¸ùʽµÄ¶¨Ò壺ÐÎÈça£¨a¡Ý0£©µÄʽ×Ó£¬½Ð×ö¶þ´Î¸ùʽ¡£
2¡¢¶þ´Î¸ùʽµÄÐÔÖÊ£º(1)ab?a?b£¨a¡Ý0£¬b¡Ý0£©£»(2)
a?bab£¨a¡Ý0£¬
b£¾0£©£»
(3) (a)2?a£¨a¡Ý0£©£» (4) a2?|a|
3¡¢¶þ´Î¸ùʽµÄ³Ë³ý·¨£º£¨1£©³Ë·¨£ºa?b?ab£¨a¡Ý0£¬b¡Ý0£©£»£¨2£©³ý·¨£º
ab?a£¨a¡Ý0£¬b£¾0£© b
¡ì11.2ʵÊýÓëÊýÖá
Ò»¡¢ÎÞÀíÊý
1¡¢ÎÞÀíÊý¶¨Ò壺ÎÞÏÞ²»Ñ»·Ð¡Êý½Ð×öÎÞÀíÊý¡£ 2¡¢³£¼ûµÄÎÞÀíÊý£º
?7?1£¬6?2£¬35?2µÈ¡££¨1£©¿ª·½¿ª²»¾¡µÄÊý¡£È磺10£¬7£¬6£¬5£¬2£¬210£¬ £¨2£©¡°?¡±ÀàµÄÊý¡£È磺?£¬??£¬£¬£¬2?µÈ¡£
£¨3£©ÎÞÏÞ²»Ñ»·Ð¡Êý¡£È磺2.1010010001¡¡£¬-0.234242242224¡¡£¬µÈ
¶þ¡¢ÊµÊý
1¡¢ÊµÊý¶¨Ò壺ÓÐÀíÊýÓëÎÞÀíÊýͳ³ÆÎªÊµÊý¡£ 2¡¢ÓëʵÊýÓйصĸÅÄ
£¨1£©Ïà·´Êý£ºÊµÊýaµÄÏà·´ÊýΪ-a¡£ÈôʵÊýa¡¢b»¥ÎªÏà·´Êý£¬Ôòa+b=0¡£ £¨2£©µ¹ Êý£º·ÇÁãʵÊýaµÄµ¹ÊýΪ£¨a¡Ù0£©¡£ÈôʵÊýa¡¢b»¥Îªµ¹Êý£¬Ôò
1a?31?ab=1¡£
?a(a?0)?£¨3£©¾ø¶ÔÖµ£ºÊµÊýaµÄ¾ø¶ÔֵΪ£º|a|??0(a?0)
??a(a?0)?
2
3¡¢ÊµÊýµÄÔËË㣺ÓÐÀíÊýµÄËùÓÐÔËËã·¨Ôò¼°ÔËËãÂɾùÊÊÓÃÓÚʵÊýµÄÔËËã¡£ 4¡¢ÊµÊýµÄ·ÖÀࣺ
£¨1£©°´ÕÕÕý¸ºÐÔ·ÖΪ£ºÕýʵÊý¡¢Áã¡¢¸ºÊµÊýÈýÀà¡£ £¨2£©°´ÕÕ¶¨Òå·ÖΪ£º 5¡¢¼¸¸ö¡°·Ç¸ºÊý¡±£º£¨1£©a2¡Ý0£»£¨2£©|a|¡Ý0£»£¨3£©a¡Ý0¡£ 6¡¢ÊµÊýÓëÊýÖáÉϵĵãÊÇÒ»Ò»¶ÔÓ¦¹ØÏµ¡£
µÚ12Õ ÕûʽµÄ³Ë³ý ¡ì12.1ÃݵÄÔËËã
Ò»¡¢Í¬µ×ÊýÃݵij˷¨
1¡¢·¨Ôò£ºam¡¤an¡¤ap¡¤¡¡=am+n+p+¡¡£¨m¡¢n¡¢p¡¡¾ùΪÕýÕûÊý£© ÎÄ×Ö£ºÍ¬µ×ÊýÃÝÏà³Ë£¬µ×Êý²»±ä£¬Ö¸ÊýÏà¼Ó¡£ 2¡¢×¢ÒâÊÂÏ
£¨1£©a¿ÉÒÔÊÇʵÊý£¬Ò²¿ÉÒÔÊÇ´úÊýʽµÈ¡£
È磺?2¡¤?3¡¤?4=?2+3+4=?9£»(-2)2¡¤(-2)3=(-2)2+3=(-2)5=-25£»
(2)3¡¤(2)4=(2)3+4=(2)7£»(a+b)3¡¤(a+b)4¡¤(a+b)= (a+b)3+4+1=(a+b)8
£¨2£©Ò»¶¨Òª¡°Í¬µ×ÊýÃÝ¡±¡°Ïà³Ë¡±Ê±£¬²ÅÄܰÑÖ¸ÊýÏà¼Ó¡£ £¨3£©Èç¹ûÊǶþ´Î¸ùʽ»òÕßÕûʽ×÷Ϊµ×Êýʱ£¬ÒªÌí¼ÓÀ¨ºÅ¡£ ¶þ¡¢Ãݵij˷½
1¡¢·¨Ôò£º(am)n=amn£¨m¡¢n¾ùΪÕýÕûÊý£©¡£Íƹ㣺£û[(am)n]p£ýs=amn p s ÎÄ×Ö£ºÃݵij˷½£¬µ×Êý²»±ä£¬Ö¸ÊýÏà³Ë¡£ 2¡¢×¢ÒâÊÂÏ
£¨1£©a¿ÉÒÔÊÇʵÊý£¬Ò²¿ÉÒÔÊÇ´úÊýʽµÈ¡£
È磺(?2)3=?2¡Á3=?6£»[(2)3]4=(2)3¡Á4=(2)12£»[(a-b)2]4= (a-b)2¡Á4=(a-b)8 £¨2£©ÔËÓÃʱעÒâ·ûºÅµÄ±ä»¯¡£
£¨3£©×¢Òâ¸Ã·¨ÔòµÄÄæÓ¦Ó㬼´£ºamn= (am)n£¬È磺a15= (a3)5= (a5)3 Èý¡¢»ýµÄ³Ë·½
1¡¢·¨Ôò£º(ab)n=anbn£¨nΪÕýÕûÊý£©¡£Íƹ㣺(acde)n=ancndnen
ÎÄ×Ö£º»ýµÄ³Ë·½µÈÓÚ°Ñ»ýµÄÿһ¸öÒòʽ¶¼·Ö±ð³Ë·½£¬ÔÙ°ÑËùµÃµÄÃÝÏà³Ë¡£ 2¡¢×¢ÒâÊÂÏ
£¨1£©a¡¢b¿ÉÒÔÊÇʵÊý£¬Ò²¿ÉÒÔÊÇ´úÊýʽµÈ¡£
È磺(2?)3=22?2=4?2£»(2¡Á3)2=(2)2¡Á(3)2=2¡Á3=6£» (-2abc)3=(-2)3a3b3c3=-8a3b3c3£»[(a+b)(a-b)]2=(a+b)2(a-b)2 £¨2£©ÔËÓÃʱעÒâ·ûºÅµÄ±ä»¯¡£
£¨3£©×¢Òâ¸Ã·¨ÔòµÄÄæÓ¦Ó㬼´£ºanbn =(ab)n£»È磺23¡Á33= (2¡Á3)3=63£¬(x+y)2(x-y)2=[(x+y)(x-y)]2
ËÄ¡¢Í¬µ×ÊýÃݵijý·¨
1¡¢·¨Ôò£ºam¡Âan=am-n£¨m¡¢n¾ùΪÕýÕûÊý£¬m£¾n£¬a¡Ù0£© ÎÄ×Ö£ºÍ¬µ×ÊýÃÝÏà³ý£¬µ×Êý²»±ä£¬Ö¸ÊýÏà¼õ¡£ 2¡¢×¢ÒâÊÂÏ
3
£¨1£©a¿ÉÒÔÊÇʵÊý£¬Ò²¿ÉÒÔÊÇ´úÊýʽµÈ¡£
È磺?4¡Â?3=?4-3=?£»(-2)5¡Â(-2)3=(-2)5-3=(-2)2=4£»
(2)6¡Â(2)4=(2)6-4=(2)2=2£»(a+b)16¡Â(a+b)14= (a+b)16-14=(a+b)2=a2+2ab +b2
£¨2£©×¢Òâa¡Ù0Õâ¸öÌõ¼þ¡£ £¨3£©×¢Òâ¸Ã·¨ÔòµÄÄæÓ¦Ó㬼´£ºam-n = am¡Âan£»È磺a x-y= ax¡Âay£¬(x+y)2a-3=(x+y)2a
¡Â(x+y)3
¡ì12.2 ÕûʽµÄ³Ë·¨
Ò»¡¢µ¥ÏîʽÓëµ¥ÏîʽÏà³Ë
·¨Ôò£ºµ¥ÏîʽÓëµ¥ÏîʽÏà³Ë£¬Ö»Òª½«ËüÃǵÄϵÊýÓëϵÊýÏà³Ë£¬Ïàͬ×ÖĸµÄÃÝÏà³Ë£¬¶àÓàµÄ×ÖĸÕÕ°áµ½×îºó½á¹ûÖС£
È磺(-5a2b2)¡¤(-4 b2c)¡¤(-ab)=[(-5)¡Á(-4)¡Á(-)]¡¤(a2¡¤a)¡¤(b2¡¤b2)¡¤c =-30a3b4c ¶þ¡¢µ¥ÏîʽÓë¶àÏîʽÏà³Ë ·¨Ôò£º£¨³Ë·¨·ÖÅäÂÉ£©Ö»Òª½«µ¥Ïîʽ·Ö±ðÈ¥³ËÒÔ¶àÏîʽµÄÿһÏÔÙ½«ËùµÃµÄ»ýÏà¼Ó¡£
È磺(?3x2)(?x2?2x?1)?(-3x2)¡¤(-x2)+(-3x2)¡¤2 xÒ»(-3x2)¡¤1=3x4?6x3?3x2 Èý¡¢¶àÏîʽÓë¶àÏîʽÏà³Ë ·¨Ôò£º£¨1£©½«Ò»¸ö¶àÏîʽÖеÄÿһÏî·Ö±ð³ËÒÔÁíÒ»¸ö¶àÏîʽµÄÿһÏÔÙ½«ËùµÃµÄ»ýÏà¼Ó¡£
È磺(m+n)(a+b)= ma+mb+na+nb
(2)°ÑÆäÖÐÒ»¸ö¶àÏîʽ¿´³ÉÒ»¸öÕûÌ壨µ¥Ïîʽ£©£¬È¥³ËÒÔÁíÒ»¸ö¶àÏîʽµÄ
ÿһÏÔÙ°´ÕÕµ¥ÏîʽÓë¶àÏîʽÏà³ËµÄ·¨Ôò¼ÌÐøÏà³Ë£¬×îºó½«ËùµÃµÄ»ýÏà¼Ó¡£
È磺(m+n)(a+b)= (m+ n)a+( m +n)b= ma+ na+mb+nb
¡ì12.3 ³Ë·¨¹«Ê½
Ò»¡¢Á½ÊýºÍ³ËÒÔÕâÁ½ÊýµÄ²î
1¡¢¹«Ê½£º(a+b)(a-b)=a2-b2£»Ãû³Æ£ºÆ½·½²î¹«Ê½¡£ 2¡¢×¢ÒâÊÂÏ£¨1£©a¡¢b¿ÉÒÔÊÇʵÊý£¬Ò²¿ÉÒÔÊÇ´úÊýʽµÈ¡£
È磺(10+9)(10-9)=102-92=100-81=19£»(2xy+a)(2xy-a)=(2xy)2-a2=4 x2y2-a2£» (a+b+?)( a+b -?)=(2xy)2-a2=4 x2y2-a2£»
£¨2£©×¢Ò⹫ʽÖеĵÚÒ»Ïî¡¢µÚ¶þÏî¸÷×ÔÏàͬ£¬ÖмäÊÇ¡°ÒìºÅ¡±µÄÇé¿ö£¬²ÅÄÜÓÃÆ½·½²î¹«Ê½¡£
£¨3£©×¢Ò⹫ʽµÄÀ´Ô´»¹ÊÇ¡°¶àÏîʽ¡Á¶àÏîʽ¡±¡£ ¶þ¡¢Íêȫƽ·½¹«Ê½
1¡¢¹«Ê½£º(a¡Àb)2=a2¡À2a b+b2£»Ãû³Æ£ºÍêȫƽ·½¹«Ê½¡£ 2¡¢×¢ÒâÊÂÏ£¨1£©a¡¢b¿ÉÒÔÊÇʵÊý£¬Ò²¿ÉÒÔÊÇ´úÊýʽµÈ¡£
4
3232