110kV变电站的设计 下载本文

对重要用户的供电。 (2)具有一定的灵活性。

主接线正常运行时可以根据调度的要求灵活的改变运行方式,达到调度的目的,而且在各种事故或设备检修时,能尽快地退出设备。切除故障停电时间最短、影响范围最小,并且再检修在检修时可以保证检修人员的安全。

(3)操作应尽可能简单、方便。

主接线应简单清晰、操作方便,尽可能使操作步骤简单,便于运行人员掌握。复杂的接线不仅不便于操作,还往往会造成运行人员的误操作而发生事故。但接线过于简单,可能又不能满足运行方式的需要,而且也会给运行造成不便或造成不必要的停电。 (4)经济上合理。

主接线在保证安全可靠、操作灵活方便的基础上,还应使投资和年运行费用小,占地面积最少,使其尽地发挥经济效益。

(5)应具有扩建的可能性。

由于我国工农业的高速发展,电力负荷增加很快。因此,在选择主接线时还要考虑到具有扩建的可能性。变电站电气主接线的选择,主要决定于变电站在电力系统中的地位、环境、负荷的性质、出线数目的多少、电网的结构等。 第一节 主接线方式选择

电气主接线是根据电力系统和变电站具体条件确定的,它以电源和出线为主体,在进出线较多时(一般超出4回),为便于电能的汇集和分配,常设置母线作为中间环节,使接线简单清晰,运行方便,有利于安装和扩建。本次所设计的变电所110kV进出线有2回, 10kV出线有20回,本期10kV线10回,所以采用有母线的连接。

现在分别对110kV、10kV侧接线方式进行选择。 一、110kV侧。

110kV侧进线2回,选用以下几种接线方案:

(1) 单母线分段接线。母线分段后重要用户可以从不同段引出两回馈电线路,一段母线故障,另一段母线仍可正常供电。

(2) 带旁路母线的单母线分段接线。母线分段后提高了供电可靠性,加上设有旁路母线,当任一出线断路器故障或检修时,可用旁路断路器代替,不使该回路停电。

(3)双母线接线。采用双母线接线后,可以轮流检修一组母线而不致使供电中断,检修任一回路的母线隔离开关时,只需断开此隔离开关所属的一条电路和与隔离开关相连的该组母线,其它电路均可通过另一组母线继续运行。

采用单母线分段接线投资较少,但可靠性相对较低,当一组母线故障时,该组母线上的进出线都要停电;采用双母线接线方式,增加了一组母线,投资相对也就增加,且当任一线路断路故障或检修时,该回路不需停电;采用单母线分段带旁路母线接线方式,任一回路断路器故障检修时,该回路都不需停电,供电可靠性比单母线分段接线强。

在本站设计中,由于110kV侧达到“两线两变”要求,同时出现故障的概率很低,能够保证高压侧的供电可靠性。而且从操作简便性和投资节约性的角度来考虑,宜采用单母线分段接线运行方式。 二、10kV侧。

10kV侧出线20回,大部分为Ⅰ类负荷,选用以下几种接线方案:

(1)单母线分段接线,它投资少,在10kV配电装置中它基本可以满足可靠性要求。 (2)单母线分段带旁路母线,这种接线方式虽然提高了供电可靠性,但增大了投资。

采用单母线分段接线亦可满足供电可靠性的要求,且节约了投资。因此,10kV侧采用单母线分段接线。 第三章 短路电流计算

在电力系统中运行的电气设备,在其运行中都必须考虑到发生的各种故障和不正常运行状态,最常见同时

也是最危险的故障是各种形式的短路。因为它们会破坏对用户正常供电和电气设备的正常运行,使电气设备受到破坏。

短路是电力系统的严重故障。所谓短路是指一切不属于正常运行的相与相之间或相与地之间(对于中性点接地系统)发生通路的情况。

在三相系统中,可能发生的有对称的三相短路和不对称的两相短路、两相接地短路和单相接地短路。在各种类型的短路中,单相短路占多数,三相短路几率最小,但其后果最为严重。因此,我们采用三相短路(对称短路)来计算短路电流,并检验电气设备的稳定性。

第一节 短路电流计算的目的和条件 一、短路电流计算的目的

在发电厂和变电站的设计中,短路计算是其中的一个重要环节。其计算的目的主要有以下几个方面: (1)电气主接线的比较。 (2)选择导体和电器。

(3)在设计屋外高型配电装置时,需要按短路条件校验软导线的相间和相对的安全距离。 (4)在选择继电保护方式和进行整定计算时,需以各种短路时的短路电流为依据。 (5)接地装置的设计,也需要用短路电流。 二、短路电流计算条件 1、基本假定

(1)正常工作时,三相系统对称运行; (2)所有电源的电动势相位相角相同;

(3)电力系统中的所有电源都在额定负荷下运行; (4)短路发生在短跑电流为最大值的瞬间;

(5)不考虑短路点的电弧阻抗和变压器的励磁电流;

(6)除去短路电流的衰减时间常数和低压网络的短路电流外,元件的电阻都略去不计; (7)元件的计算参数均取其额定值,不考虑参数的误差和调整范围; (8)输电线路的电容忽略不计。 2、一般规定

(1)验算导体和电器动稳定、热稳定以及电器开断电流挪用的短路电流,应根据本工程设计规划容量计算,并考虑远景的发展计划;

(2)选择导体和电器用的短路电流,在电气连接的网络中,应考虑具有反馈作用的异步电动机的影响和电容补偿装置放电电流的影响;

(3)选择导体和电器时,对不带电抗器回路的计算短路点应选择在正常接线方式时短路电流为最大的地点; (4)导体和电器的动稳定、热稳定以及电器的开断电流,一般按三相短路验算。 第四章 电气设备的选择

第一节 导体和电气设备选择的一般条件

正确地选择设备是使电气主接线和配电装置达到安全、经济运行的重要条件。在进行设备选择时,应根据工程实际情况,在保证安全、可靠的前提下,积极而稳妥地采用新技术,并注意节约投资,选择合适的电气设备。

尽管电力系统中电气设备的作用和条件不一样,具体选择方法也不相同,但对它们的具体要求是一样的。电气设备要能可靠的工作,必须按正常工作条件选择,并按短路状态来校验热稳定和动稳定。 一、一般原则

1、应满足正常运行、检修、短路和过电压情况下的要求,并考虑远景发展的需要; 2、 应按当地环境条件校验; 3、 应力求技术先进和经济合理;

4、 选择导体时应尽量减少品种; 5、 扩建工程应尽量使新老电器型号一致;

6、 选用的新产品,均应具有可靠的试验数据,并经正式鉴定合格。 二、技术条件

选择的高压电器,应能在长期工作条件下和发生过电压、过电流的情况下保持正常运行。 1.长期工作条件 (1)电压

选用电器允许最高工作电压Uymax不得低于该回路的最高运行电压Ugmax,即:Uymax≥Ugmax (2)电流

选用的电器额定电流Ie不得低于所在回路在各种可能运行方式下的持续工作电流Ig,即:Ie≥Ig 由于变压器短时过载能力很大,双回路出线的工作电流变化幅度也较大,故其计算工作电流应根据实际需要确定。

高压电器没有明确的过载能力,所以在选择额定电流时,应满足各种可能运行方式下回路持续工作电流的要求。

2.短路稳定条件 (1)校验的一般原则

①、电气设备在选定后按最大可能通过的短路电流进行动、热稳 定校验,校验的短路电流一般取三相短路时的短路电流。

②、用熔断器保护的电器可不验算热稳定。 ③、短路的热稳定条件 Qr≥Qd 或 I2rt≥I2∞tdz

式中Qd--在计算时间tjs秒内,短路电流的热效应(k2A?s) Ir--t秒内设备允许通过的热稳定电流有效值(kA) t--设备允许通过的热稳定电流时间(s)

校验短路热稳定所用的计算时间tjs按下式计算: tjs=tb+td

式中tb--继电保护装置后备保护动作时间(s) td--断路器全分闸时间(s) ④、短路动稳定条件 ich≤idf Ich≤Idf

式中ich--短路冲击电流峰值(kA) idf--短路全电流有效值(kA)

Ich--电器允许的极限通过电流有效值(kA) 3.绝缘水平

在工作电压和过电压的作用下,电器内、外绝缘保证必要的可靠性。电器的绝缘水平,应按电网中出现的各种过电压和保护设备相应的保护水平来确定。当所选电器的绝缘水平低于国家规定的标准数值时,应通过绝缘配合计算,选用适当的过电压保护设备。 三、环境条件

环境条件主要有温度、日照、风速、冰雪、温度、污秽、海拔、地震。由于设计时间仓促,所以在设计中主要考虑温度条件。

按照规程规定,普通高压电器在环境最高温度为+40℃时,允许按照额定电流长期工作。当电器安装点的环境温度高于+40℃时,每增加1℃建议额定电流减少1.8%;当低于+40℃时,每降低1℃,建议额定电流增加0.5%,但总的增加值不得超过额定电流的20%。

第二节 断路器的选择

电力系统中,断路器具有完善的灭弧性能,正常情况下,用来接通和开断负荷电流,在某些电器主接线中,还担任改变主接线的运行方式的任务,故障时,断路器还常在继电保护的配合使用下,断开短路电流,切断故障部分,保证非故障部分的正常运行。

由于SF6断路器灭弧性能可靠,维护工作量小,故110kV一般采用SF6短路器。

1.按开断电流选择。高压断路器的额定开断电流Iekd≥Iz(高压断路器触头实际开断瞬间的短路电流周期分量有效值)。

2.短路关合电流的选择。断路器的额定关合电流ieg应不小于短路电流最大冲击值iej。即ieg≥icj 3.开关合闸时间的选择。开关合分闸时间,对于110kV以上的电网,当电力系统稳定要求快速切除故障,分闸时间不宜大于0.04--0.06s。 [计算过程见计算说明书附录3 ] 第三节 隔离开关的选择

隔离开关配置在主接线上,保证了线路及设备检修时形成明显的断开点与带电部分隔离,由于隔离开关没有灭弧装置及开断能力低,所以操作隔离开关时,必须遵守倒闸操作顺序,即送电时,首先合上母线侧隔离开关,其次合上线路侧隔离开关,最后合上断路器,停电顺序则与上述相反。 隔离开关的配置:

1.断路器的两侧均应配置隔离开关,以便在断路器检修时形成明显的断口与电源隔离。 2.中性点直接接地的普通变压器,均应通过隔离开关接地。

3.在母线上的避雷器和电压互感器,宜合用一组隔离开关,为了保 证电器和母线的检修安全,每段母线上宜装设1--2组接地刀闸。

4.接在变压器引出线或中性点的避雷器可不装设隔离开关。

5.当馈电线路的用户侧没有电源时,断路器通往用户的那一侧可以不装设隔离开关。但为了防止雷电过电压,也可以装设。

[计算过程见计算说明书附录4 ] 第四节 高压熔断器的选择

熔断器是最简单的保护电器。它用来保护电器免受过载和短路电流的损害。屋内型高压熔断器在变电所中常用于保护电力电器,配电线路和配电变压器,而在电厂中多用于保护电压互感器。

1.额定电压选择。对于一般高压熔断器,其额定电压要大于或等于电网额定电压,另外,对于填充石英沙用限流作用的熔断器,则只能用于其额定电网电压中,因为这种类型的熔断器能在电流达到最大值之前就将电流切断,致使熔断器熔断时产生过电压。

2.额定电流选择。熔断器的额定电流选择,为了保证熔断器不致损坏,高压熔断器的熔断额定电流Ierg应大于或等于熔体的额定电流Iert 3.熔断器开断电流检验,Iekd≥Icj

对于保护电力互感器的高压熔断器只需按规定电压及断流量来选择。 第五节 互感器的选择

互感器是变换电压、电流的电气设备。它包括电压互感器和电流互感器,是一次系统和二次系统间的联络元件,分别向两侧提供电压、电流信号以及反映一次系统中电气设备的正常运行和故障情况。 互感器作用:

1.将一次回路的高电压和大电流变为二次回路的标准的低电压和小电流。

2.将二次设备和高压部分隔离,且互感器二次侧均接地,从而保证了设备和人生安全。 电流互感器的特点:

1.一次绕组串联在电路中,并且匝数少,故一次绕组中的电流完全取决于被测电路的负荷电流,而与二次电流大小无关。

2.互感器二次绕组所接仪表的电流线圈阻抗很小,所以在正常情况下,电流互感器在近于短路的状态下运