五年级数学奥数培训资料
练习1:
1.五个同学有同样多的存款,若每人拿出16元捐给“希望工程”后,五位同学剩下的钱正好等于原来3人的存款数。原来每人存款多少?
2.把一堆货物平均分给6个小组运,当每个小组都运了68箱时,正好运走了这堆货物的一半。这堆货物一共有多少箱?
3.老师把一批树苗平均分给四个小队栽,当每队栽了6棵时,发现剩下的树苗正好是原来每队分得的棵数。这批树苗一共有多少棵?
【例题2】 某车间按计划每天应加工50个零件,实际每天加工56个零件。这样,不仅提前3天完成原计划加工零件的任务,而且还多加工了120个零件。这个车间实际加工了多少个零件?
【思路导航】如果按原计划的天数加工,加工的零件就会比原计划多56×3+120=288(个)。为什么会多加工288个呢?是因为每天多加工了56-50=6(个)。因此,原计划加工的天数是288÷6=48(天),实际加工了50×48+120=1520(个)零件。
练习2:
1.汽车从甲地开往乙地,原计划每小时行40千米,实际每小时多行了10千米,这样比原计划提前2小时到达了乙地。甲、乙两地相距多少千米?
2.小明骑车上学,原计划每分钟行200米,正好准时到达学校,有一天因下雨,他每分钟只能行120米,结果迟到了5分钟。他家离学校有多远?
3.加工一批零件,原计划每天加工80个,正好按期完成任务。由于改进了生产技术,实际每天加工100个,这样,不仅提前4天完成加工任务,而且还多加工了100个。他们实际加工零件多少个?
【例题3】 甲、乙二人加工零件。甲比乙每天多加工6个零件,乙中途停了15天没有加工。40天后,乙所加工的零件个数正好是甲的一半。这时两人各加工了多少个零件?
【思路导航】甲工作了40天,而乙停止了15天没有加工,乙只加工了25天,所以他加工的零件正好是甲的一半,也就是甲20天加工的零件和乙25天加工的零件同样多。由于甲每天比乙多加工6个,20天一共多加工6×20=120(个)。这120个零件相当于乙25-20=5(天)加工的个数,乙每天加工120÷(25-20)=24(个)。乙一共加工了24×25=600(个),甲一共加工了600×2=1200(个)
练习3:
1.甲、乙二人加工一批帽子,甲每天比乙多加工10个。途中乙因事休息了5天,20天后,甲加工的帽子正好是乙加工的2倍,这时两人各加工帽子多少个?
2.甲、乙两车同时从A、B两地相对开出,甲车每小时比乙车多行20千米。途中乙因修车用了2小时,6小时后甲车到达两地中点,而乙车才行了甲车所行路程的一半。A、B两地相距多少千米?
3.甲、乙两人承包一项工程,共得工资1120元。已知甲工作了10天,乙工作了12天,且甲5天的工资和乙4天的工资同样多。求甲、乙每天各分得工资多少元?
【例题4】 服装厂要加工一批上衣,原计划20天完成任务。实际每天比计划多加工60件,照这样做了15天,就超过原计划件数350件。原计划加工上衣多少件?
【思路导航】由于每天比计划多加工60件,15天就比原计划的15天多加工60×15=900(件),这时已超过计划件数350件,900件中去掉这350件,剩下的件数就是原计划(20
- 13 -
五年级数学奥数培训资料 姓名:__________________
-15)天中的工作量。所以,原计划每天加工上衣(900-350)÷(20-15)=110(件),原计划加工110×20=2200(件)。 练习4:
1.用汽车运一堆煤,原计划8小时运完。实际每小时比原计划多运1.5吨,这样运了6小时就比原计划多运了3吨。原计划8小时运多少吨煤?
2.汽车从甲地开往乙地,原计划10小时到达。实际每小时比原计划多行15千米,行了8小时后,发现已超过乙20千米。甲、乙两地相距多少千米?
3.小明看一本书,原计划8天看完。实际每天比原计划少看了4页。这样,用10天才看完了这本书。这本书一共有多少页?
【例题5】 王师傅原计划每天做60个零件,实际每天比原计划多做20个,结果提前5在完成任务。王师傅一共做了多少个零件?
【思路导航】按实际做法再做5天,就会超产(60+20)×5=400(个)。为什么会超产400个呢?是因为每天多生产了20个,400里面有几个20,就是原计划生产几天。400÷20=20(天),因此,王师傅一共做了60×20=1200(个)零件。
练习5:
1.食堂准备了一批煤,原计划每天烧0.8吨,实际每天比原计划节约了0.1吨,这样比原计划多烧了2天。这批煤一共有多少吨?
2.造纸厂生产一批纸,计划每天生产13.5吨,实际每天比原计划多生产1.5吨,结果提前2.5天完成了任务。实际用了多少天?
3.机床厂生产一批机床,原计划每天生产15台,实际每天生产18台,这样比原计划提前3天完成了任务。这批机床一共有多少台?
第8讲 一般应用题(二)
一、知识要点
较复杂的一般应用题,往往具有两组或两组以上的数量关系交织在一起,但是,再复杂的应用题都可以通过“转化”向基本的问题靠拢。因此,我们在解答一般应用题时要善于分析,把复杂的问题简单化,从而正确解答。
二、精讲精练
【例题1】 工程队要铺设一段地下排水管道,用长管子铺需要25根,用短管子铺需要35根。已知这两种管子的长相差2米,这段排水管道长多少米?
【思路导航】因为每根长管子比每根短管子长2米,25根长管子就比25根短管子长50米。而这50米就相当于(35-25)根短管子的长度。因此,每根短管子的长度就是50÷(35-25)=5(米),这段排水管道的长度应是5×35=175(米)。
练习1:
1.生产一批零件,甲单独生产要用6小时,乙单独生产要用8小时。如果甲每小时比乙多生产10个零件,这批零件一共有多少个?
2.一班的小朋友在操场上做游戏,每组6人。玩了一会儿,他们觉得每组人数太少便重新分组,正好每组9人,这样比原来减少了2组。参加游戏的小朋友一共有多少人?
3.甲、乙二人同时从A地到B地,甲经过10小时到达了B地,比乙多用了4小时。已知二人的速度差是每小时5千米,求甲、乙二人每小时各行多少千米?
【例题2】 甲、乙、丙三人拿出同样多的钱买一批苹果,分配时甲、乙都比丙多拿
- 14 -
五年级数学奥数培训资料
24千克。结帐时,甲和乙都要付给丙24元,每千克苹果多少元?
【思路导航】三人拿同样多的钱买苹果应该分得同样多的苹果。24×2÷3=16(千克),也就是丙少拿16千克苹果,所以得到24×2=48元。每千克苹果是48÷16=3(元)。 练习2:
1.甲和乙拿出同样多的钱买相同的铅笔若干支,分铅笔时,甲拿了13支,乙拿了7支,因此,甲又给了乙6角钱。每支铅笔多少钱?
2.春游时小明和小军拿出同样多的钱买了6个面包,中午发现小红没有带食品,结果三人平均分了这些面包,而小红分别给了小明和小军各2.2元钱。每个面包多少元?
3.“六一”儿童节时同学们做纸花,小华买来了7张红纸,小英买来了和红纸同样价格的5张黄纸。老师把这些纸平均分给了小华、小英和另外两名同学,结果另外两名同学共付给老师9元钱。老师把9元钱怎样分给小华和小英?
【例题3】 甲城有177吨货物要跑一趟运到乙城。大卡车的载重量是5吨,小卡车的载重量是2吨,大、小卡车跑一趟的耗油量分别是10升和5升。用多少辆大卡车和小卡车来运输时耗油最少?
【思路导航】大汽车一次运5吨,耗油10升,平均运1吨货耗油10÷5=2(升);小汽车一次运2吨,耗油5升,平均运1吨货耗油5÷2=2.5(升)。显然,为耗油量最少应该尽可能用大卡车。177÷5=35(辆)……2吨,余下的2吨正好用小卡车运。因此,用35辆大汽车和1辆小汽车运耗油量最少。
练习3:
1.五名选手在一次数学竞赛中共得404分,每人得分互不相同,并且都是整数。如果最高分是90分,那么得分最少的选手至少得多少分?
2.用1元钱买4分、8分、1角的邮票共15张,那么最多可以买1角的邮票多少张? 3.某班有60人,其中42人会游泳,46人会骑车,50人会溜冰,55人会打乒乓球。可以肯定至少有多少人四项都会?
【例题4】 有一栋居民楼,每家都订2份不同的报纸,该居民楼共订了三种报纸,其中北京日报34份,江海晚报30份,电视报22份。那么订江海晚报和电视报的共有多少家?
【思路导航】这栋楼共订报纸34+30+22=86(份),因为每家都订2份不同的报纸,所以一共有86÷2=43家。在这43家居民中,有34家订了北京日报,剩下的9家居民一定是订了江海晚报和电视报。
练习4: 1.五(1)班全体同学每人带2个不同的水果去慰问解放军叔叔,全班共带了三种水果,其中苹果40个,梨32个,桔子26个。那么,带梨和桔子的有多少个同学?
2.在一次庆祝“六一”儿童节活动中,一个方队的同学每人手里都拿两种颜色的气球,共有红、黄、绿三种颜色。其中红色有56只,黄色的有60只,绿色的有46只。那么,手拿红、绿两种气球的有多少个同学?
3.学校开设了音乐、球类和美术三个兴趣小组,第一小队的同学们每人都参加了其中的两个小组,其中9人参加球类小组,6人参加美术小组,7人参加音乐小组的活动。参加美术和音乐小组活动的有多少个同学?
【例题5】 一艘轮船发生漏水事故,立即安装两台抽水机向外抽水,此时已进水800
- 15 -
五年级数学奥数培训资料 姓名:__________________
桶。一台抽水机每分钟抽水18桶,另一台每分钟抽水14桶,50分钟把水抽完。每分钟进水多少桶?
【思路导航】50分钟内,两台抽水机一共能抽水(18+14)×50=1600(桶)。1600桶水中,有800桶是开始抽之前就漏进的,另800桶是50分钟又漏进的,因此,每分钟漏进水800÷50=16(桶)。 练习5:
1.一个水池能装8吨水,水池里装有一个进水管和一个出水管。两管齐开,20分钟能把一池水放完。已知进水管每分钟往池里进水0.8吨,求出水管每分钟放水多少吨?
2.某工地原有水泥120吨。因工程需要,又派5辆卡车往工地送水泥,平均每辆卡车每天送25吨,3天后工地上共有水泥101吨。这个工地平均每天用水泥多少吨?
3.一堆货物重96吨,甲队用16小时运完,乙队用24小时运完。如果让两队同时合运,几小时运完?
第9讲 一般应用题(三)
一、知识要点
解答一般应用题时,可以按下面的步骤进行: 1.弄清题意,找出已知条件和所求问题;
2.分析已知条件和所求问题之间的关系,找出解题的途径; 3.拟定解答计划,列出算式,算出得数;
4,检验解答方法是否合理,结果是否正确,最后写出答案。 二、精讲精练
【例题1】 甲、乙两工人生产同样的零件,原计划每天共生产700个。由于改进技术,甲每天多生产100个,乙的日产量提高了1倍,这样二人一天共生产1020个。甲、乙原计划每天各生产多少个零件?
【思路导航】二人实际每天比原计划多生产1020-700=320(个)。这320个零件中,有100个是甲多生产的,那么320-100=220(个)就是乙日产量的1倍,即乙原来的日产量,甲原来每天生产700-220=480(个)。
练习1:
1.工厂里有2个锅炉,原来每月烧煤5.6吨。进行技术改造后,1号锅炉每月节约1吨煤,2号锅炉每月烧煤量减少了一半,现在每月共烧煤3.5吨。原来两个锅炉每月各烧煤多少吨?
2.甲、乙两人生产同样的零件,原计划每天共生产80个。由于更换了机器,甲每天多做40个,乙每天生产的是原来的4倍,这样二人一天共生产零件300个。甲、乙原计划每天各生产多少个零件?
3.甲、乙两队合挖一条水渠,原计划两队每天共挖100米,实际甲队因有人请假,每天比计划少挖15米,而乙队由于增加了人,每天挖的是原计划的2倍,这样两队每天一共挖了150米。求两队原计划每天各挖多少米?
【例题2】 把一根竹竿插入水底,竹竿湿了40厘米,然后将竹竿倒转过来插入水底,这时,竹竿湿的部分比它的一半长13厘米。求竹竿的长。
【思路导航】因为竹竿先插了一次,湿了40厘米,倒转过来再插一次又湿了40厘米,所以湿了的部分是40×2=80(厘米)。这时,湿的部分比它的一半长13厘米,说明竹竿的
- 16 -