ϰÌâ4.1 1.a.Ϊһ¸ö·ÖÖÎËã·¨±àдα´úÂë,¸ÃËã·¨ÇóÒ»¸ön¸öÔªËØÊý×éÖÐ×î´óÔªËØµÄλÖÃ. b.Èç¹ûÊý×éÖеÄÈô¸É¸öÔªËØ¶¼¾ßÓÐ×î´óÖµ,¸ÃËã·¨µÄÊä³öÊÇÔõÑùµÄÄØ? c.½¨Á¢¸ÃËã·¨µÄ¼üÖµ±È½Ï´ÎÊýµÄµÝÍÆ¹ØÏµÊ½²¢Çó½â. d.ÇëÄøÃËã·¨Óë½âͬÑùÎÊÌâµÄÂùÁ¦Ëã·¨×öÒ»¸ö±È½Ï ½â:a. Algorithms MaxIndex(A[l..r]){ Input:A portion of array A[0..n-1] between indices l and r(l¡Ür) Output: The index of the largest element in A[l..r] if l=r return l else temp1¡ûMaxIndex(A[l..(l+r)/2]) temp2¡ûMaxIndex(A[(l+r)/2..r]) if A[temp1]¡ÝA[temp2] return temp1 else return temp2 } b.·µ»ØÊý×éÖÐλÓÚ×î×ó±ßµÄ×î´óÔªËØµÄÐòºÅ. c.¼üÖµ±È½Ï´ÎÊýµÄµÝÍÆ¹ØÏµÊ½: C(n)=C( n/2 )+C( n/2 )+1 for n>1 C(1)=0 Éèn=2k£¬C(2k)=2C(2k-1)+1 =2[2 C(2k-2)+1]+1=22C(2k-2)+2+1 =2[22C(2k-3)+1]+2+1=23C(2k-3)+ 22+2+1 =... =2iC(2k-i)+ 2i-1+2 i-2 +...+2+1 =... =2kC(2k-k)+ 2k-1+2 k-2 +...+2+1=2k£1=n-1 ¿ÉÒÔÖ¤Ã÷C(n)=n-1¶ÔËùÓÐn>1µÄÇé¿ö¶¼³ÉÁ¢£¨nÊÇżÊý»òÆæÊý£© d.±È½ÏµÄ´ÎÊýÏàͬ£¬µ«ÂùÁ¦Ëã·¨²»Óõݹéµ÷Óᣠ2¡¢a.Ϊһ¸ö·ÖÖÎËã·¨±àдα´úÂ룬¸ÃË㷨ͬʱÇó³öÒ»¸önÔªÊý×éµÄ×î´óÔªËØºÍ×îÐ¡ÔªËØµÄÖµ¡£ b.ÇëÄøÃËã·¨Óë½âͬÑùÎÊÌâµÄÂùÁ¦Ëã·¨×öÒ»¸ö±È½Ï¡£ c.ÇëÄøÃËã·¨Óë½âͬÑùÎÊÌâµÄÂùÁ¦Ëã·¨×öÒ»¸ö±È½Ï¡£ ½â´ð£º a.ͬʱÇó³ö×î´óÖµºÍ×îСֵ£¬Ö»ÐèÒª½«ÔÊý×éÒ»·ÖΪ¶þ£¬ÔÙʹÓÃÏàͬµÄ·½·¨ÕÒ³öÕâÁ½¸ö²¿·ÖÖеÄ×î´óÖµºÍ×îСֵ£¬È»ºó¾¹ý±È½Ï¾Í¿ÉÒԵõ½Õû¸öÎÊÌâµÄ×î´óÖµºÍ×îСֵ¡£ Ëã·¨ MaxMin(A[l..r],Max,Min) //¸ÃËã·¨ÀûÓ÷ÖÖμ¼ÊõµÃµ½Êý×éAÖеÄ×î´óÖµºÍ×îСֵ //ÊäÈ룺ÊýÖµÊý×éA[l..r]
13
//Êä³ö£º×î´óÖµMaxºÍ×îСֵMin
if(r=l) Max¡ûA[l]£»Min¡ûA[l]; //Ö»ÓÐÒ»¸öÔªËØÊ± else
if r£l=1 //ÓÐÁ½¸öÔªËØÊ±
if A[l]¡ÜA[r]
Max¡ûA[r]; Min¡ûA[l]
else
Max¡ûA[l]; Min¡ûA[r]
else //r£l>1
MaxMin(A[l,(l+r)/2],Max1,Min1); //µÝ¹é½â¾öǰһ²¿·Ö MaxMin(A[(l+r/)2..r],Max2,Min2); //µÝ¹é½â¾öºóÒ»²¿·Ö
if Max1£¼Max2 Max= Max2 //´ÓÁ½²¿·ÖµÄÁ½¸ö×î´óÖµÖÐÑ¡Ôñ´óÖµ if Min2 } b.¼ÙÉèn=2k,±È½Ï´ÎÊýµÄµÝÍÆ¹ØÏµÊ½: C(n)=2C(n/2)+2 for n>2 C(1)=0, C(2)=1 C(n)=C(2k)=2C(2k-1)+2 =2[2C(2k-2)+2]+2 =22C(2k-2)+22+2 =22[2C(2k-3)+2]+22+2 =23C(2k-3)+23+22+2 ... =2k-1C(2)+2k-1+2k-2+...+2 //C(2)=1 =2k-1+2k-1+2k-2+...+2 //ºóÃæ²¿·ÖΪµÈ±ÈÊýÁÐÇóºÍ =2k-1+2k-2 //2(k-1)=n/2,2k=n =n/2+n-2 =3n/2£2 b.ÂùÁ¦·¨µÄËã·¨ÈçÏ£º Ëã·¨ simpleMaxMin(A[l..r]) //ÓÃÂùÁ¦·¨µÃµ½Êý×éAµÄ×î´óÖµºÍ×îСֵ //ÊäÈ룺ÊýÖµÊý×éA[l..r] //Êä³ö£º×î´óÖµMaxºÍ×îСֵMin Max=Min=A[l]; for i=l+1 to r do if A[i]>Max Max¡ûA[i]; else if A[i] ʱ¼ä¸´ÔÓ¶Èt(n)=2(n-1) Ëã·¨MaxMinµÄʱ¼ä¸´ÔÓ¶ÈΪ3n/2-2£¬simpleMaxMinµÄʱ¼ä¸´ÔÓ¶ÈΪ2n-2£¬¶¼ÊôÓÚ¦¨(n)£¬µ«±È½ÏһϷ¢ÏÖ£¬MaxMinµÄËÙ¶ÈÒª±ÈsimpleMaxMinµÄ¿ìһЩ¡£ 6.Ó¦Óúϲ¢ÅÅÐò¶ÔÐòÁÐE,X,A,M,P,L,E°´×Öĸ˳ÐòÅÅÐò. 14 1 2 3 8.a.¶ÔºÏ²¢ÅÅÐòµÄ×î²î¼üÖµ±È½Ï´ÎÊýµÄµÝÍÆ¹ØÏµÊ½Çó½â.(for n=2k) b.½¨Á¢ºÏ²¢ÅÅÐòµÄ×îÓżüÖµ±È½Ï´ÎÊýµÄµÝÍÆ¹ØÏµÊ½Çó½â.(for n=2k) c.¶ÔÓÚ4.1½Ú¸ø³öµÄºÏ²¢ÅÅÐòËã·¨,½¨Á¢ËüµÄ¼üÖµÒÆ¶¯´ÎÊýµÄµÝÍÆ¹ØÏµÊ½.¿¼ÂÇÁ˸ÃËã·¨µÄ¼üÖµÒÆ¶¯´ÎÊýÖ®ºó,ÊÇ·ñ»áÓ°ÏìËüµÄЧÂÊÀàÐÍÄØ? ½â: a. µÝÍÆ¹ØÏµÊ½¼û4.1½Ú. b. ×îºÃÇé¿ö(ÁбíÉýÐò»ò½µÐò)ÏÂ: Cbest(n)=2Cbest(n/2)+n/2 for n>1 (n=2k) Cbest(1)=0 15 c. ¼üÖµ±È½Ï´ÎÊýM(n) M(n)=2M(n)+2n for n>1 M(1)=0 ϰÌâ4.2 1.Ó¦ÓÿìËÙÅÅÐò¶ÔÐòÁÐE,X,A,M,P,L,E°´×Öĸ˳ÐòÅÅÐò 16