32. 如图所示,半径为R,线电荷密度为? (>0)的均匀带电的圆线圈,绕过圆 y O R ?心与圆平面垂直的轴以角速度??转动,求轴线上任一点的B的大小及其
方向.
33. 横截面为矩形的环形螺线管,圆环内外半径分别为R1和R2,芯子材料的磁导率为?,导线总匝数为N,绕得很密,若线圈通电流I,求. (1) 芯子中的B值和芯子截面的磁通量. (2) 在r < R1和r > R2处的B值.
34. 一无限长圆柱形铜导体(磁导率?0),半径为R,通有均匀分布的电流I.今取一矩形平面S (长为1 m,宽为2 R),位置如右图中画斜线部分所示,求通
??N b R2 R1 I S 1 m 过该矩形平面的磁通量.
35. 质子和电子以相同的速度垂直飞入磁感强度为B的匀强磁场中,试求质子轨道半径R1与电子轨道半径R2的比值.
36. 在真空中,电流由长直导线1沿底边ac方向经a点流入一由电阻均 匀的导线构成的正三角形线框,再由b点沿平行底边ac方向从三角形框流出,经长直导线2返回电源(如图).已知直导线的电流强度为I,
?2R b I 2 O 1 I a e c ?三角形框的每一边长为l,求正三角形中心O处的磁感强度B.
37. 在真空中将一根细长导线弯成如图所示的形状(在同一平面内,由实线 表示),AB?EF?R,大圆弧BC的半径为R,小圆弧DE的半径为
C I E A B D 60? O R F I ?1R,求圆心O处的磁感强度B的大小和方向. 238. 有一条载有电流I的导线弯成如图示abcda形状.其中ab、cd是直线段,其余为圆弧.两段圆弧的长度和半径分别为l1、R1和l2、R2,且两
I a b l2 l1 R1 O c R2 -d ?段圆弧共面共心.求圆心O处的磁感强度B的大小.
39. 假定地球的磁场是由地球中心的载流小环产生的,已知地极附近磁感强度B为 6.273105 T,地球半径为R =6.373106 m.?0 =4?3107 H/m.试用毕奥-萨伐尔定律求该电流环的磁矩大小.
-
40. 在氢原子中,电子沿着某一圆轨道绕核运动.求等效圆电流的磁矩pm与电子轨道运动的动量矩
????L大小之比,并指出pm和L方向间的关系.(电子电荷为e,电子质量为m)
第 5 页 共 33 页
41. 两根导线沿半径方向接到一半径R =9.00 cm的导电圆环上.如图.圆弧ADB是铝导线,铝线电阻率为?1 =2.50310 ?2m,圆弧ACB是铜导线,铜线电阻率为?2 =1.60310 ?2m.两种导线截面积相同,圆弧ACB的弧长是圆周长的1/?.直导线在很远处与电源相联,弧ACB上的电流I2 =2.00A,求圆心O点处磁感强度B的大小.(真空磁导率?0 =4?3107 T2m/A)
--8
-8
D I1 R O A C I2 B 42. 一根很长的圆柱形铜导线均匀载有10 A电流,在导线内部作一平面S,S的一个边是导线的中心轴线,另一边是S平面与导线表面的交线,如图所示.试计算通过沿导线长度方向长为1m的一段S平面的磁通量.(真空的磁导率?0 =4?3107 T2m/A,铜的相对磁导率?r≈1)
-
S 43. 两个无穷大平行平面上都有均匀分布的面电流,面电流密度分别为i1和 i2,若i1和i2之间夹角为??,如图,求: (1) 两面之间的磁感强度的值Bi. (2) 两面之外空间的磁感强度的值Bo. (3) 当i1?i2?i,??0时以上结果如何?
44. 图示相距为a通电流为I1和I2的两根无限长平行载流直导线.
i1 ??i2 a ??(1) 写出电流元I1dl1对电流元I2dl2的作用力的数学表达式;
(2) 推出载流导线单位长度上所受力的公式.
?I1dl1 I1 I2 ?r12 ?I2dl2
45. 一无限长导线弯成如图形状,弯曲部分是一半径为R的半圆,两直线部分平行且与半圆平面垂直,如在导线上通有电流I,方向如图.(半圆导线所在平面与两直导线所在平面垂直)求圆心O处的磁感强度.
46. 如图,在球面上互相垂直的三个线圈 1、2、3,通有相等的电流,电流方向如箭头所示.试求出球心O点的磁感强度的方向.(写出在直角坐标系中的方向余弦角)
47. 一根半径为R的长直导线载有电流I,作一宽为R、长为l的假想平面S,如图所示。若假想平面S可在导线直径与轴OO'所确定的平面内离开OO'轴移动至远处.试求当通过S面的磁通量最大时S平面的位置(设直导线内电流分布是均匀的).
I R O I I 3 1 y O 2 z x O R S I l O′ S 第 6 页 共 33 页
3 3 O 48. 带电粒子在均匀磁场中由静止开始下落,磁场方向与重力方向(x轴 3x y ??方向)垂直,求粒子下落距离为y时的速率v,并叙述求解方法的理论
v B 3 3 3 依据. y 49. 平面闭合回路由半径为R1及R2 (R1 > R2 )的两个同心半圆弧和两个直导线
R1 I 段组成(如图).已知两个直导线段在两半圆弧中心O处的磁感强度为零,且
R2 闭合载流回路在O处产生的总的磁感强度B与半径为R2的半圆弧在O点产O 生的磁感强度B2的关系为B = 2 B2/3,求R1与R2的关系.
50. 在一半径R =1.0 cm的无限长半圆筒形金属薄片中,沿长度方向有横截面上均匀分布的电流I = 5.0 A通过.试求圆柱轴线任一点的磁感强度.(?0 =4?3107 N/A2)
--51. 已知均匀磁场,其磁感强度B = 2.0 Wb2m2,方向沿x轴正向,如 图所示.试求:
(1) 通过图中abOc面的磁通量; (2) 通过图中bedO面的磁通量; (3) 通过图中acde面的磁通量.
52. 如图所示,一无限长载流平板宽度为a,线电流密度(即沿x方向单位长度上的电流)为??,求与平板共面且距平板一边为b的任意点P的磁感强度.
53. 通有电流I的长直导线在一平面内被弯成如图形状,放于垂直进入纸
x 40 cm a 30 cm c z 50 cm B O d x y 30 cm b e ?b ? a ?O P ?面的均匀磁场B中,求整个导线所受的安培力(R为已知).
???B?I ??R I ????54. 三根平行长直导线在同一平面内,1、2和2、3之间距离都是d=3cm , O ⊙ 其中电流I1?I2,I3??(I1?I2),方向如图.试求在该平面内B =
1 ⊙ 2 ??x 3 0的直线的位置.
55. 均匀带电刚性细杆AB,线电荷密度为?,绕垂直于直线的轴O以??角速度匀速转动(O点在细杆AB延长线上).求:
?(1) O点的磁感强度B0;
?(2) 系统的磁矩pm;
(3) 若a >> b,求B0及pm.
O a A b B ??第 7 页 共 33 页
?56. 在B = 0.1 T的均匀磁场中,有一个速度大小为v =10 m/s的电子沿垂直于B4
A ?v 的方向(如图)通过A点,求电子的轨道半径和旋转频率.(基本电荷e = 1.60310?19 C, 电子质量me = 9.11310?31 kg)
57. 两长直平行导线,每单位长度的质量为m =0.01 kg/m,分别用l =0.04 m长 的轻绳,悬挂于天花板上,如截面图所示.当导线通以等值反向的电流时,已知两悬线张开的角度为2? =10°,求电流I.(tg5°=0.087,?0 =4?3107
-
?B l ????l I ⊙ ??I N2A2)
-
58. 一无限长载有电流I的直导线在一处折成直角,P点位于导线所在平面内,距一条折线的延长线和另一条导线的距离都为a,如图.求P点
I a P a ?的磁感强度B.
59. 一面积为S的单匝平面线圈,以恒定角速度?在磁感强度B?B0sin?tk的均匀外磁场中转动,
?????转轴与线圈共面且与B垂直( k为沿z轴的单位矢量).设t =0时线圈的正法向与k同方向,
求线圈中的感应电动势.
60. 在一无限长载有电流I的直导线产生的磁场中,有一长度为b的平行于导线的短铁棒,它们相距为a.若铁棒以速度v垂直于导线与铁棒初始位置组成的平面匀速运动,求t时刻铁棒两端的感应电动势?的大小.
61. 在细铁环上绕有N = 200匝的单层线圈,线圈中通以电流I =2.5 A,穿过铁环截面的磁通量??=0.5 mWb,求磁场的能量W.
62. 一个密绕的探测线圈面积为4 cm2,匝数N =160,电阻R =50 ?.线圈与一个内阻r =30 ?的冲击电流计相连.今把探测线圈放入一均匀磁场中,线圈法线与磁场方向平行.当把线圈法线转到垂直磁场的方向时,电流计指示通过的电荷为 43105 C.问磁场的磁感强度为多少?
-
?63. 两同轴长直螺线管,大管套着小管,半径分别为a和b,长为L (L >>a;a >b),匝数分别为N1和N2,求互感系数M.
?B64. 均匀磁场被限制在半径R =10 cm的无限长圆柱空间内,方向垂直纸
面向里.取一固定的等腰梯形回路abcd,梯形所在平面的法向与圆柱空间的轴平行,位置如图所示.设磁感强度以dB /dt =1 T/s的匀速率增加,
× b × R ? O ?× B a × c
1已知???,Oa?Ob?6cm,求等腰梯形回路中感生电动势的大小
3和方向.
d 第 8 页 共 33 页