2∴a2?2,a2?2;
a3?2a2?22?2,a3?2;
23234a42?2a3?2?2?2,a4?2.
2(2)??3时,an?1?2an?3.
347478(i)先证:an?3. ∵an?1?9?2?an?3?,∴
2an?1?32??0,
an?3an?1?3∴an?1?3与an?3同号,又a1?3?0,∴an?3?0,∴an?3.
?1?(ii)再证:an?3????2?∵a2n?1n?2.
an?1?3221???, ?2an?3?3,∴an?1?3?1,∴
an?3an?1?31?32当n?2时,3?an?1?3?an?1?, 2n?1?1?∴3?an??3?a1????2??1?∴an?3????2?n?2?1?????2?n?2,
n?2?1?.又a1?1,∴an?3????2?.
点睛:证明数列型不等式手段多样,本题利用循环递缩的方式即
11?3?an??3?an?1?,3?an??3?a1????2?2?的关系.
n?1?1?????2?n?2,由相邻的关系循环利用此关系得到第n项与首相