第13讲 新定义材料理解问题-2020年中考数学《二轮冲刺核心重点难点热点15讲》(全国通用)原卷板 下载本文

如图1,将长为12cm的铅笔AB斜靠在垂直于水平桌面AE的直尺FO的边沿上,一端A固定在桌面上,图2是示意图. 活动一

如图3,将铅笔AB绕端点A顺时针旋转,AB与OF交于点D,当旋转至水平位置时,铅笔AB的中点C与点O重合.

数学思考

(1)设CD=xcm,点B到OF的距离GB=ycm.

①用含x的代数式表示:AD的长是 cm,BD的长是 cm; ②y与x的函数关系式是 ,自变量x的取值范围是 . 活动二

(2)①列表:根据(1)中所求函数关系式计算并补全表格 x(cm) y(cm)

6 0

5 0.55

4 1.2

3.5 1.58

3 _____

2.5 2.47

2 3

1 4.29

0.5 5.08

0 _____

②描点:根据表中数值,继续描出①中剩余的两个点(x,y).

③连线:在平面直角坐标系中,请用平滑的曲线画出该函数的图象. 数学思考

(3)请你结合函数的图象,写出该函数的两条性质或结论.

【例题5】(2019?宁波)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.

(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点. 求证:四边形ABEF是邻余四边形.

(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB是邻余线,E,F在格点上.

(3)如图3,在(1)的条件下,取EF中点M,连结DM并延长交AB于点Q,延长EF交AC于点N.若N为AC的中点,DE=2BE,QB=3,求邻余线AB的长.

【变式5-1】(2019?扬州)如图,平面内的两条直线l1、l2,点A,B在直线l1上,点C、D在直线l2上,过A、B两点分别作直线l2的垂线,垂足分別为A1,B1,我们把线段A1B1叫做线段AB在直线l2上的正投影,其长度可记作T(AB,CD)或T(AB,l2),特别地线段AC在直线l2上的正投影就是线段A1C. 请依据上述定义解决如下问题:

(1)如图1,在锐角△ABC中,AB=5,T(AC,AB)=3,则T(BC,AB)= ;

(2)如图2,在Rt△ABC中,∠ACB=90°,T(AC,AB)=4,T(BC,AB)=9,求△ABC的面积; (3)如图3,在钝角△ABC中,∠A=60°,点D在AB边上,∠ACD=90°,T(AD,AC)=2,T(BC,AB)=6,求T(BC,CD),

【变式5-2】(2019?常州)已知平面图形S,点P、Q是S上任意两点,我们把线段PQ的长度的最大值称

为平面图形S的“宽距”.例如,正方形的宽距等于它的对角线的长度. (1)写出下列图形的宽距: ①半径为1的圆: ;

②如图1,上方是半径为1的半圆,下方是正方形的三条边的“窗户形“: ;

(2)如图2,在平面直角坐标系中,已知点A(﹣1,0)、B(1,0),C是坐标平面内的点,连接AB、BC、CA所形成的图形为S,记S的宽距为d.

①若d=2,用直尺和圆规画出点C所在的区域并求它的面积(所在区域用阴影表示);

②若点C在⊙M上运动,⊙M的半径为1,圆心M在过点(0,2)且与y轴垂直的直线上.对于⊙M上任意点C,都有5≤d≤8,直接写出圆心M的横坐标x的取值范围.

1.(2019?宜昌)古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦﹣秦九韶公式:如果一个三角形的三边长分别是a,b,c,记p=

,那么三角形的面积

为S=.如图,在△ABC中,∠A,∠B,∠C所对的边分别记为a,b,c,若a=5,b=6,c=7,则△ABC的面积为( )

A.6

B.6

C.18

2xdx=k2﹣n2,若C.2

D.

﹣x2dx=﹣2,则m=( )

2.定义一种新运算A.﹣2

n?xn1dx=an﹣bn,例如B.﹣

D.

3.(2019?柳州)定义:形如a+bi的数称为复数(其中a和b为实数,i为虚数单位,规定i2=﹣1),a称为复数的实部,b称为复数的虚部.复数可以进行四则运算,运算的结果还是一个复数.例如(1+3i)2=12+2×1×3i+(3i)2=1+6i+9i2=1+6i﹣9=﹣8+6i,因此,(1+3i)2的实部是﹣8,虚部是6.已知复数(3﹣mi)2的虚部是12,则实部是( ) A.﹣6 B.6 C.5 D.﹣5 4.(2019?株洲)从﹣1,1,2,4四个数中任取两个不同的数(记作ak,bk)构成一个数组MK={ak,bk}(其中k=1,2…S,且将{ak,bk}与{bk,ak}视为同一个数组),若满足:对于任意的Mi={ai,bi}和Mj={aj,bj}(i≠j,1≤i≤S,1≤j≤S)都有ai+bi≠aj+bj,则S的最大值( ) A.10 B.6 C.5 D.4 5.(2019?杭州)在平面直角坐标系中,已知a≠b,设函数y=(x+a)(x+b)的图象与x轴有M个交点,函数y=(ax+1)(bx+1)的图象与x轴有N个交点,则( ) A.M=N﹣1或M=N+1 B.M=N﹣1或M=N+2 C.M=N或M=N+1 D.M=N或M=N﹣1 6.(2019?常州)随着时代的进步,人们对PM2.5(空气中直径小于等于2.5微米的颗粒)的关注日益密切.某市一天中PM2.5的值y1(ug/m3)随时间t(h)的变化如图所示,设y2表示0时到t时PM2.5的值的极差(即0时到t时PM2.5的最大值与最小值的差),则y2与t的函数关系大致是( )

A.B.C.D.

7.(2019?百色)阅读理解:

已知两点M(x1,y1),N(x2,y2),则线段MN的中点K(x,y)的坐标公式为:x=

,y=