中国矿业大学2011届本科生毕业论文 第37页
4.10布置方案的评价及选择
采用分级加权评价法对上述三个布置方案进行评价。步骤如下: (1)、根据污水处理厂的基本要求和特点,把有关的因素列成一个清单,对每一个因素规定一个评价标尺; (2)、按照各因素相对重要程度,对各个因素赋予一定得权重,对每个候选
方案规定的评价标尺打分,结果如表4-10-1所示。
表4-10-1因素及其分值
影响因 a、物流原效率 分 素 因 值 b、工艺的连续性 c、安全生产 d、生产变化的适应性 e、生活工作环境 f、对周边环境的影响 g、可扩建性 非常满意 4 很满意 3 满意 不满意 2 1 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1
(3)、把分数与加权相乘,并把每个方案的面积累加起来; (4)、选择分数最高的那个候选方案为最终结果。
对三个方案进行分级加权评分得结果如表4-10-2所示:
表4-10-2 方案加权计算表
因素 方权值 案 分数
a 5 3 4 3 b 5 3 3 3 c 4 4 4 4 d 4 3 4 2 e 4 4 4 4 f 3 4 3 4 g 2 3 3 4 总 分 92 98 90 方案一 方案二 方案三 由此可以得出方案二最优
中国矿业大学2011届本科生毕业论文 第38页
4.10动线分析
物流动线的主要型式有:直线型、U型、S型、O 型、L 型等。在徐州污水处理厂的平面布局中由于工艺流程及场地的原因,不可能做到完全使物流路线达到理论上的最短。在方案二的布局中,物流路线呈U型,相对原来的设计有了极大改善,大大减少了因路线迂回而产生的管渠及建筑物的建造浪费;另一方面充分利用了原有处理区即厂区西部,降低了生物反应池产生的臭气对周边人口密集区徐州工程学院的影响。污水进口及出口都紧邻奎河。
(7)动线分析。在此之前均是空间的合理布置设计,故在对一到两个可选方案进行详细布置设计后,有必要对现代企业的物流动线和人行动线进行分析,即物料搬运系统分析,并对最优方案进行调整、反馈修正,使其物流动线和人行动线具有最大的合理性和流畅性,并使搬运方法和搬运手段合理化,以提高现代企业的运转效率。在这里可以运用系统搬运分析方法SHA(Systenatic Handling Analysis)进行动线分析。一般来说,选择车间内部流动模式的一个重要因素是车间入口和出口的位置。常常由于外部运输条件或原有布置的限制,需要按照给定的入、出口位置来规划流动模式。此外,流动模式还受生产工艺流程、生产线长度、场地、建筑物外形、物料搬运方式与设备、贮存要求等方面的影响。物流动线的主要型式有:直线型、U型、S 型、O 型、L 型等。实际流动模式常常是由五种基本流动模式组合而成的。新建企业时可以根据生产流程要求及各作业单位之间物流关系选择流动模式,进而确定建筑物的外形及尺寸。
中国矿业大学2011届本科生毕业论文 第39页
5 小结
参考文献
[1]
[2] 杨晓英,姚冠新,等.现代企业物流系统分析技术的研究[J].物流技术, 2003,(7):10~13.
[3]JATompkins,JAWhite.FacilitiesPlanning[M].NewYork:JohnWiler&Sons,1984.
[1] 刘旺盛:系统布置设计——SLP法的改进研究[J].物流技术与应用,2006(11):90-94
英文原文
FOR EFFECTIVE FACILITIES PLANNING: LAYOUT OPTIMIZATION THEN SIMULATION, OR VICE
VERSA?
Esra E. Aleisa
Li Lin 412 Bell Hall
Department of Industrial Engineering
中国矿业大学2011届本科生毕业论文 第40页
University at Buffalo Buffalo, NY 14260, U.S.A.
ABSTRACT
It is widely accepted that simulation is an integral part of any effective facilities planning or layout study. Traditional approaches claim that layout optimization produces strategic results and therefore should precede simulation analysis, which focuses on operational issues. On the other hand, more recent studies suggest that running simulation models prior to conducting layout optimization produces more realistic layouts. In this paper, we contrast these two paradigms, with respect to the general assumptions and the types of applications that advocates from each paradigm have used to support their claim. In addition, we propose guidelines on which approach to pursue according to the layout study objectives and the characteristics of the system under consideration.
1 OVERVIEW OF THE FACILITY LAYOUT PROBLEM
Facility layout is the arrangement of activities, features and spaces in consideration of the relationship that exists between them (Hales 1984). It belongs to the class of spatial allocation problems that have been studied in various contexts, including architecture space planning, manufacturing layout, offices layout and VLSI Layout (Tam,and Li 1991;Tompkins et al. 2003). Facility or plant layout is a part of facilities design, which includes more global issues such as plant location, building design, material handling, etc. In general, plant layout analysis includes a study of the production line process flow charts, material flow diagrams, product routings, processing times, development of
from-to charts, relationship diagrams between different departments in the facility and the cost of material movement (Francis, McGinnis ,and White 1992)
In its most basic form, a facility layout problem (FLP) is analytically formulated according to the Quadratic Assignment Problem (QAP), a classical model in discrete optimization which works by enumerating different layout configurations until the best arrangement is obtained. Although mathematically elegant, QAP is an NP-hard problem (Sahni ,and Gonzalez 1976), which implies it is computationally impractical for problems involving over fifteen departments (Partovi ,and Burton 1992). Due to the combinatorial aspects of optimally solving the FLP, analysts have developed various heuristics to substitute for blind search