¸ß¿¼ÊýѧһÂÖ¸´Ï°µÚ¶þÕº¯Êý¸ÅÄîÓë»ù±¾³õµÈº¯ÊýµÚ6¿Îʱ¶ÔÊýÓë¶ÔÊýº¯Êý½Ì°¸ doc ÏÂÔØ±¾ÎÄ

µäÀý (1)Éèa£½0.5£¬b£½0.3£¬c£½log0.30.2£¬Ôòa£¬b£¬cµÄ´óС¹ØÏµÊÇ( ) A.c

£­2

0.5

0.5

B.a

(2)Éèa£½log2¦Ð£¬b£½log1¦Ð£¬c£½¦Ð£¬Ôò( )

2A.a>b>c C.a>c>b

B.b>a>c D.c>b>a

(3)ÒÑÖªa£½5log23.4£¬b£½5log43.6£¬c£½()log30.3£¬Ôò( ) A.a>b>c C.a>c>b

0.5

15B.b>a>c D.c>a>b

˼άµã²¦ (1)¿É¸ù¾ÝÃݺ¯Êýy£½xµÄµ¥µ÷ÐÔ»ò±ÈÉÌ·¨È·¶¨a£¬bµÄ´óС¹ØÏµ£¬È»ºóÀûÓÃÖмäÖµ±È½Ïa£¬c´óС.(2)a£¬b¾ùΪ¶ÔÊýʽ£¬¿É»¯ÎªÍ¬µ×£¬ÔÙÀûÓÃÖмä±äÁ¿ºÍc±È½Ï.(3)»¯ÎªÍ¬µ×µÄÖ¸Êýʽ. ½âÎö (1)¸ù¾ÝÃݺ¯Êýy£½xµÄµ¥µ÷ÐÔ£¬ ¿ÉµÃ0.3<0.5<1£½1£¬¼´b

¸ù¾Ý¶ÔÊýº¯Êýy£½log0.3xµÄµ¥µ÷ÐÔ£¬¿ÉµÃlog0.30.2>log0.30.3£½1£¬¼´c>1.ËùÒÔb

(2)¡ßa£½log2¦Ð>log22£½1£¬b£½log1¦Ð£½log2

¦Ð¦Ð

20.5

0.5

0.5

0.5

10log31log30.3?log30.3?5?53. (3)c?()5·½·¨Ò» ÔÚÍ¬Ò»×ø±êϵÖзֱð×÷³öº¯Êýy£½log2x£¬y£½log3x£¬y£½log4xµÄͼÏñ£¬ÈçͼËùʾ.

ÓÉͼÏñÖª£º

10

log23.4>log3>log43.6.

3

1010

·½·¨¶þ ¡ßlog3>log33£½1£¬ÇÒ<3.4£¬

3310

¡àlog3

310

¡ßlog43.61£¬

3

9

1010

¡àlog43.6log3>log43.6.

33ÓÉÓÚy£½5ΪÔöº¯Êý£¬¡à5¼´5log23.4?()xlog23.4?5log3103?5log43.6.

15log30.3?5log43.6£¬¹Êa>c>b.

´ð°¸ (1)C (2)C (3)C

ÎÂܰÌáÐÑ (1)±È½ÏÖ¸ÊýʽºÍ¶ÔÊýʽµÄ´óС£¬¿ÉÒÔÀûÓú¯ÊýµÄµ¥µ÷ÐÔ£¬ÒýÈëÖмäÁ¿£»ÓÐʱҲ¿ÉÓÃÊýÐνáºÏµÄ·½·¨.

(2)½âÌâʱҪ¸ù¾Ýʵ¼ÊÇé¿öÀ´¹¹ÔìÏàÓ¦µÄº¯Êý£¬ÀûÓú¯Êýµ¥µ÷ÐÔ½øÐбȽϣ¬Èç¹ûÖ¸ÊýÏàͬ£¬¶øµ×Êý²»Í¬Ôò¹¹ÔìÃݺ¯Êý£¬Èôµ×ÊýÏàͬ¶øÖ¸Êý²»Í¬Ôò¹¹ÔìÖ¸Êýº¯Êý£¬ÈôÒýÈëÖмäÁ¿£¬Ò»°ãÑ¡0»ò1.

[·½·¨Óë¼¼ÇÉ]

1.¶ÔÊýֵȡÕý¡¢¸ºÖµµÄ¹æÂÉ

µ±a>1ÇÒb>1»ò00£» µ±a>1ÇÒ01ʱ£¬logab<0. 2.¶ÔÊýº¯ÊýµÄ¶¨ÒåÓò¼°µ¥µ÷ÐÔ

ÔÚ¶ÔÊýʽÖУ¬ÕæÊý±ØÐëÊÇ´óÓÚ0µÄ£¬ËùÒÔ¶ÔÊýº¯Êýy£½logaxµÄ¶¨ÒåÓòӦΪ(0£¬£«¡Þ).¶ÔÊýº¯ÊýµÄµ¥µ÷ÐÔºÍ

aµÄÖµÓйأ¬Òò¶ø£¬ÔÚÑо¿¶ÔÊýº¯ÊýµÄµ¥µ÷ÐÔʱ£¬Òª°´01½øÐзÖÀàÌÖÂÛ.

3.±È½ÏÃÝ¡¢¶ÔÊý´óСÓÐÁ½ÖÖ³£Ó÷½·¨£º(1)ÊýÐνáºÏ£»(2)ÕÒÖмäÁ¿½áºÏº¯Êýµ¥µ÷ÐÔ.

4.¶à¸ö¶ÔÊýº¯ÊýͼÏñ±È½Ïµ×Êý´óСµÄÎÊÌ⣬¿Éͨ¹ý±È½ÏͼÏñÓëÖ±Ïßy£½1½»µãµÄºá×ø±ê½øÐÐÅж¨. [ʧÎóÓë·À·¶]

1.ÔÚÔËËãÐÔÖÊlogaM£½¦ÁlogaMÖУ¬ÒªÌرð×¢ÒâÌõ¼þ£¬ÔÚÎÞM£¾0µÄÌõ¼þÏÂӦΪlogaM£½¦Áloga|M|(¦Á¡ÊN£«£¬ÇÒ¦ÁΪżÊý).

2.½â¾öÓë¶ÔÊýº¯ÊýÓйصÄÎÊÌâʱÐè×¢ÒâÁ½µã£º(1)Îñ±ØÏÈÑо¿º¯ÊýµÄ¶¨ÒåÓò£»(2)×¢Òâ¶ÔÊýµ×ÊýµÄȡֵ·¶Î§.

¦Á¦Á

A×é רÏî»ù´¡ÑµÁ· (ʱ¼ä£º40·ÖÖÓ)

1.Èôº¯Êýy£½logax(a>0£¬ÇÒa¡Ù1)µÄͼÏñÈçͼËùʾ£¬ÔòÏÂÁк¯ÊýͼÏñÕýÈ·µÄÊÇ( )

10

´ð°¸ B

½âÎö ÓÉÌâͼ¿ÉÖªy£½logaxµÄͼÏñ¹ýµã(3,1)£¬ ¡àloga3£½1£¬¼´a£½3.

1x£­xAÏy£½3£½()ÔÚRÉÏΪ¼õº¯Êý£¬´íÎó£»

3BÏy£½x·ûºÏ£»

CÏy£½(£­x)£½£­xÔÚRÉÏΪ¼õº¯Êý£¬´íÎó£» DÏy£½log3(£­x)ÔÚ(£­¡Þ£¬0)ÉÏΪ¼õº¯Êý£¬´íÎó. 1

2.º¯Êýy£½ln µÄͼÏñΪ( )

|2x£­3|

3

3

3

´ð°¸ A

333

½âÎö Ò×Öª2x£­3¡Ù0£¬¼´x¡Ù£¬ÅųýC¡¢D.µ±x>ʱ£¬º¯ÊýΪ¼õº¯Êý£¬µ±x<ʱ£¬º¯ÊýΪÔöº¯Êý£¬ËùÒÔÑ¡

222A.

3.ÒÑÖªb>0£¬log5b£½a£¬lg b£½c,5£½10£¬ÔòÏÂÁеÈʽһ¶¨³ÉÁ¢µÄÊÇ( ) A.d£½ac C.c£½ad ´ð°¸ B

log5baaad½âÎö log5b£½a£¬lg b£½c£¬Á½Ê½Ïà³ýµÃ£½£¬log510£½.¡ß5£½10£¬¡àlog510£½d£¬¡àd£½£¬cd£½a.¹ÊÑ¡

lg bccc

11

dB.a£½cd D.d£½a£«c

B.

4.Éèf(x)£½lg?A.(£­1,0) C.(£­¡Þ£¬0) ´ð°¸ A

½âÎö ÓÉf(x)ÊÇÆæº¯Êý¿ÉµÃa£½£­1£¬ 1£«x¡àf(x)£½lg£¬¶¨ÒåÓòΪ(£­1,1).

1£­x1£«xÓÉf(x)<0£¬¿ÉµÃ0<<1£¬¡à£­1

1£­x1x5.¶¨ÒåÔÚRÉϵĺ¯Êýf(x)Âú×ãf(£­x)£½£­f(x)£¬f(x£­2)£½f(x£«2)£¬ÇÒx¡Ê(£­1,0)ʱ£¬f(x)£½2£«£¬Ôò

5

?2£«a?ÊÇÆæº¯Êý£¬Ôòʹf(x)<0µÄxµÄȡֵ·¶Î§ÊÇ( )

?

?1£­x?

B.(0,1)

D.(£­¡Þ£¬0)¡È(1£¬£«¡Þ)

f(log220)µÈÓÚ( )

A.1 C.£­1 ´ð°¸ C

½âÎö ÓÉf(x£­2)£½f(x£«2)£¬µÃf(x)£½f(x£«4)£¬ÒòΪ4£¼log220£¼5£¬ËùÒÔf(log220)£½f(log220£­4)£½£­

log214

f(4£­log220)£½£­f(log2)£½?(25?)£½£­1.

5544

B. 54D.£­

5

5?1?£­1

6.(2015¡¤°²»Õ)lg£«2lg 2£­??£½________.

2?2?´ð°¸ £­1

55?1?£­12

½âÎö lg £«2lg 2£­??£½lg £«lg 2£­2

22?2?

?5?£½lg?¡Á4?£­2£½1£­2£½£­1. ?2?

1?????2?x£¬x¡Ý2£¬

7.ÒÑÖªº¯Êýf(x)£½???

??fx£«1£¬x<2£¬1

´ð°¸

6

½âÎö ÓÉÌâÒâÖªf(log23)£½f(1£«log23)£½f(log26)£½()

Ôòf(log23)µÄֵΪ________.

12log261£½. 6

12