µäÀý (1)Éèa£½0.5£¬b£½0.3£¬c£½log0.30.2£¬Ôòa£¬b£¬cµÄ´óС¹ØÏµÊÇ( ) A.c
£2
0.5
0.5
B.a
(2)Éèa£½log2¦Ð£¬b£½log1¦Ð£¬c£½¦Ð£¬Ôò( )
2A.a>b>c C.a>c>b
B.b>a>c D.c>b>a
(3)ÒÑÖªa£½5log23.4£¬b£½5log43.6£¬c£½()log30.3£¬Ôò( ) A.a>b>c C.a>c>b
0.5
15B.b>a>c D.c>a>b
˼άµã²¦ (1)¿É¸ù¾ÝÃݺ¯Êýy£½xµÄµ¥µ÷ÐÔ»ò±ÈÉÌ·¨È·¶¨a£¬bµÄ´óС¹ØÏµ£¬È»ºóÀûÓÃÖмäÖµ±È½Ïa£¬c´óС.(2)a£¬b¾ùΪ¶ÔÊýʽ£¬¿É»¯ÎªÍ¬µ×£¬ÔÙÀûÓÃÖмä±äÁ¿ºÍc±È½Ï.(3)»¯ÎªÍ¬µ×µÄÖ¸Êýʽ. ½âÎö (1)¸ù¾ÝÃݺ¯Êýy£½xµÄµ¥µ÷ÐÔ£¬ ¿ÉµÃ0.3<0.5<1£½1£¬¼´b ¸ù¾Ý¶ÔÊýº¯Êýy£½log0.3xµÄµ¥µ÷ÐÔ£¬¿ÉµÃlog0.30.2>log0.30.3£½1£¬¼´c>1.ËùÒÔb (2)¡ßa£½log2¦Ð>log22£½1£¬b£½log1¦Ð£½log2 ¦Ð¦Ð 20.5 0.5 0.5 0.5 10log31log30.3?log30.3?5?53. (3)c?()5·½·¨Ò» ÔÚÍ¬Ò»×ø±êϵÖзֱð×÷³öº¯Êýy£½log2x£¬y£½log3x£¬y£½log4xµÄͼÏñ£¬ÈçͼËùʾ. ÓÉͼÏñÖª£º 10 log23.4>log3>log43.6. 3 1010 ·½·¨¶þ ¡ßlog3>log33£½1£¬ÇÒ<3.4£¬ 3310 ¡àlog3 310 ¡ßlog43.6 3 9 1010 ¡àlog43.6 33ÓÉÓÚy£½5ΪÔöº¯Êý£¬¡à5¼´5log23.4?()xlog23.4?5log3103?5log43.6. 15log30.3?5log43.6£¬¹Êa>c>b. ´ð°¸ (1)C (2)C (3)C ÎÂܰÌáÐÑ (1)±È½ÏÖ¸ÊýʽºÍ¶ÔÊýʽµÄ´óС£¬¿ÉÒÔÀûÓú¯ÊýµÄµ¥µ÷ÐÔ£¬ÒýÈëÖмäÁ¿£»ÓÐʱҲ¿ÉÓÃÊýÐνáºÏµÄ·½·¨. (2)½âÌâʱҪ¸ù¾Ýʵ¼ÊÇé¿öÀ´¹¹ÔìÏàÓ¦µÄº¯Êý£¬ÀûÓú¯Êýµ¥µ÷ÐÔ½øÐбȽϣ¬Èç¹ûÖ¸ÊýÏàͬ£¬¶øµ×Êý²»Í¬Ôò¹¹ÔìÃݺ¯Êý£¬Èôµ×ÊýÏàͬ¶øÖ¸Êý²»Í¬Ôò¹¹ÔìÖ¸Êýº¯Êý£¬ÈôÒýÈëÖмäÁ¿£¬Ò»°ãÑ¡0»ò1. [·½·¨Óë¼¼ÇÉ] 1.¶ÔÊýֵȡÕý¡¢¸ºÖµµÄ¹æÂÉ µ±a>1ÇÒb>1»ò00£» µ±a>1ÇÒ01ʱ£¬logab<0. 2.¶ÔÊýº¯ÊýµÄ¶¨ÒåÓò¼°µ¥µ÷ÐÔ ÔÚ¶ÔÊýʽÖУ¬ÕæÊý±ØÐëÊÇ´óÓÚ0µÄ£¬ËùÒÔ¶ÔÊýº¯Êýy£½logaxµÄ¶¨ÒåÓòӦΪ(0£¬£«¡Þ).¶ÔÊýº¯ÊýµÄµ¥µ÷ÐÔºÍ aµÄÖµÓйأ¬Òò¶ø£¬ÔÚÑо¿¶ÔÊýº¯ÊýµÄµ¥µ÷ÐÔʱ£¬Òª°´01½øÐзÖÀàÌÖÂÛ. 3.±È½ÏÃÝ¡¢¶ÔÊý´óСÓÐÁ½ÖÖ³£Ó÷½·¨£º(1)ÊýÐνáºÏ£»(2)ÕÒÖмäÁ¿½áºÏº¯Êýµ¥µ÷ÐÔ. 4.¶à¸ö¶ÔÊýº¯ÊýͼÏñ±È½Ïµ×Êý´óСµÄÎÊÌ⣬¿Éͨ¹ý±È½ÏͼÏñÓëÖ±Ïßy£½1½»µãµÄºá×ø±ê½øÐÐÅж¨. [ʧÎóÓë·À·¶] 1.ÔÚÔËËãÐÔÖÊlogaM£½¦ÁlogaMÖУ¬ÒªÌرð×¢ÒâÌõ¼þ£¬ÔÚÎÞM£¾0µÄÌõ¼þÏÂӦΪlogaM£½¦Áloga|M|(¦Á¡ÊN£«£¬ÇÒ¦ÁΪżÊý). 2.½â¾öÓë¶ÔÊýº¯ÊýÓйصÄÎÊÌâʱÐè×¢ÒâÁ½µã£º(1)Îñ±ØÏÈÑо¿º¯ÊýµÄ¶¨ÒåÓò£»(2)×¢Òâ¶ÔÊýµ×ÊýµÄȡֵ·¶Î§. ¦Á¦Á A×é רÏî»ù´¡ÑµÁ· (ʱ¼ä£º40·ÖÖÓ) 1.Èôº¯Êýy£½logax(a>0£¬ÇÒa¡Ù1)µÄͼÏñÈçͼËùʾ£¬ÔòÏÂÁк¯ÊýͼÏñÕýÈ·µÄÊÇ( ) 10 ´ð°¸ B ½âÎö ÓÉÌâͼ¿ÉÖªy£½logaxµÄͼÏñ¹ýµã(3,1)£¬ ¡àloga3£½1£¬¼´a£½3. 1x£xAÏy£½3£½()ÔÚRÉÏΪ¼õº¯Êý£¬´íÎó£» 3BÏy£½x·ûºÏ£» CÏy£½(£x)£½£xÔÚRÉÏΪ¼õº¯Êý£¬´íÎó£» DÏy£½log3(£x)ÔÚ(£¡Þ£¬0)ÉÏΪ¼õº¯Êý£¬´íÎó. 1 2.º¯Êýy£½ln µÄͼÏñΪ( ) |2x£3| 3 3 3 ´ð°¸ A 333 ½âÎö Ò×Öª2x£3¡Ù0£¬¼´x¡Ù£¬ÅųýC¡¢D.µ±x>ʱ£¬º¯ÊýΪ¼õº¯Êý£¬µ±x<ʱ£¬º¯ÊýΪÔöº¯Êý£¬ËùÒÔÑ¡ 222A. 3.ÒÑÖªb>0£¬log5b£½a£¬lg b£½c,5£½10£¬ÔòÏÂÁеÈʽһ¶¨³ÉÁ¢µÄÊÇ( ) A.d£½ac C.c£½ad ´ð°¸ B log5baaad½âÎö log5b£½a£¬lg b£½c£¬Á½Ê½Ïà³ýµÃ£½£¬log510£½.¡ß5£½10£¬¡àlog510£½d£¬¡àd£½£¬cd£½a.¹ÊÑ¡ lg bccc 11 dB.a£½cd D.d£½a£«c B. 4.Éèf(x)£½lg?A.(£1,0) C.(£¡Þ£¬0) ´ð°¸ A ½âÎö ÓÉf(x)ÊÇÆæº¯Êý¿ÉµÃa£½£1£¬ 1£«x¡àf(x)£½lg£¬¶¨ÒåÓòΪ(£1,1). 1£x1£«xÓÉf(x)<0£¬¿ÉµÃ0<<1£¬¡à£1 1£x1x5.¶¨ÒåÔÚRÉϵĺ¯Êýf(x)Âú×ãf(£x)£½£f(x)£¬f(x£2)£½f(x£«2)£¬ÇÒx¡Ê(£1,0)ʱ£¬f(x)£½2£«£¬Ôò 5 ?2£«a?ÊÇÆæº¯Êý£¬Ôòʹf(x)<0µÄxµÄȡֵ·¶Î§ÊÇ( ) ? ?1£x? B.(0,1) D.(£¡Þ£¬0)¡È(1£¬£«¡Þ) f(log220)µÈÓÚ( ) A.1 C.£1 ´ð°¸ C ½âÎö ÓÉf(x£2)£½f(x£«2)£¬µÃf(x)£½f(x£«4)£¬ÒòΪ4£¼log220£¼5£¬ËùÒÔf(log220)£½f(log220£4)£½£ log214 f(4£log220)£½£f(log2)£½?(25?)£½£1. 5544 B. 54D.£ 5 5?1?£1 6.(2015¡¤°²»Õ)lg£«2lg 2£??£½________. 2?2?´ð°¸ £1 55?1?£12 ½âÎö lg £«2lg 2£??£½lg £«lg 2£2 22?2? ?5?£½lg?¡Á4?£2£½1£2£½£1. ?2? 1?????2?x£¬x¡Ý2£¬ 7.ÒÑÖªº¯Êýf(x)£½??? ??fx£«1£¬x<2£¬1 ´ð°¸ 6 ½âÎö ÓÉÌâÒâÖªf(log23)£½f(1£«log23)£½f(log26)£½() Ôòf(log23)µÄֵΪ________. 12log261£½. 6 12