广东省中山一中,朱欢收集整理,欢迎学习交流
2011年—2017年新课标全国卷理科数学试题分类汇编
13.排列组合、概率统计
一、选择题
(2017·新课标Ⅰ,2)如图,正方形ABCD内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )
A.
1π1π B. C. D. 4824(2017·新课标Ⅱ,6)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同
的安排方式共有( )
A.12种 B.18种 C.24种 D.36种 (2017·新课标Ⅲ,3)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图,根据该折线图,下列结论错误的是( ).
A.月接待游客量逐月增加 B.年接待游客量逐年增加
C.各年的月接待游客量高峰期大致在7,8月份
D.各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳
(2016·新课标Ⅰ,4)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车丫的时候是随机的,则他等车时间不超过10分钟的概率是
(A)
1 3 (B)
1 2 (C)
2 3 (D)
3 4(2016·新课标Ⅱ,5)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )
???GFEA.24 B.18 C.12 D.9
广东省中山一中,朱欢收集整理,欢迎学习交流
(2016·新课标Ⅱ,10)从区间[0,1]随机抽取2n个数x1,x2,…,xn,y1,y2,…,yn,构成n个数对(x1,y1),
(x2,y2),…,(xn,yn),其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周
率π的近似值为( )
A.
4n m B.
2n m C.
4m n D.
2m n(2016·新课标Ⅲ,4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15?C,B点表示四月的平均最低气温约为5?C.下面叙述不正确的是( )
A. 各月的平均最低气温都在0?C以上 B. 七月的平均温差比一月的平均温差大 C. 三月和十一月的平均最高气温基本相同 D. 平均最高气温高于20?C的月份有5个
(2015·新课标Ⅰ,4)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )
(A)0.648 (B)0.432 (C)0.36 (D)0.312 (2015·新课标Ⅱ,3)根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是( )
A.逐年比较,2008年减少二氧化硫排放量的效果最显著. B.2007年我国治理二氧化硫排放显现成效. C.2006年以来我国二氧化硫年排放量呈减少趋势. D.2006年以来我国二氧化硫年排放量与年份正相关.
(2014·新课标Ⅰ,5)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率( )
1357A. B. C. D.
8888(2014·新课标Ⅱ,5)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( ) A.0.8
B.0.75
C.0.6 D.0.45
(2013·新课标Ⅰ,3)为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行
调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( ).
A.简单随机抽样 B.按性别分层抽样 C.按学段分层抽样 D.系统抽样
广东省中山一中,朱欢收集整理,欢迎学习交流
(2012·新课标Ⅰ,2)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( ) A.12种
B.10种
C.9种
D.8种
(2011·新课标Ⅰ,4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( ) (A)
1123 (B) (C) (D) 3234(2012·新课标Ⅱ,2)将2名教师,4名学生分成两个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由一名教师和2名学生组成,不同的安排方案共有( ) A. 12种
B. 10种
C. 9种
D. 8种
(2011·新课标Ⅱ,4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( )
1123A. B. C. D.
3234二、填空题
(2017·新课标Ⅱ,13)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,?表示抽到的二等品件数,则D?? . (2013·新课标Ⅱ,14)从n个正整数1,2,?,n中任意取出两个不同的数,若取出的两数之和等于5的概率为
1,则n=______. 14(2012·新课标Ⅰ、Ⅱ,15)某一部件由三个电子元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作. 设三个电子元件的使用寿命(单位:小时)服从正态分布N(1000,502),且各元件能否正常工作互相独立,那么该部件的使用寿命超过1000小时的概率为 . 三、解答题
元件1 元件2 元件3 (2017·新课标Ⅰ,19)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零
2
件的尺寸服从正态分布N(μ,σ).
(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ–3σ,μ+3σ)之外的零件数,求 P(X≥1)及X的数学期望;
(2)一天内抽检零件中,如果出现了尺寸在(μ–3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.
(ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:
9.95 10.26 10.12 9.91 9.96 9.96 10.01 9.22 9.92 9.98 10.04 9.95 10.13 10.02 10.04 10.05 广东省中山一中,朱欢收集整理,欢迎学习交流
11611611622xi?9.97,s?经计算得x?(xi?x)?(?xi?16x2)2?0.212,其中xi为抽取??16i?116i?116i?1的第i个零件的尺寸,i=1,2,…,16.
?,用样本标准差s作为σ的估计值??,利用估计值判断是否需对当用样本平均数x作为μ的估计值???3??,???3??)之外的数据,用剩下的数据估计μ和σ(精确到0.01). 天的生产过程进行检查?剔除(?2
附:若随机变量Z服从正态分布N(μ,σ),则P(μ–3σ 0.997416≈0.9592,0.008?0.09. (2017·新课标Ⅱ,18)淡水养殖场进行某水产品的新、旧网箱养殖方法的产量对比学|科网,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg)某频率直方图如下: (1)设两种养殖方法的箱产量相互独立,记A表示事件:旧养殖法的箱产量低于50kg, 新养殖法的箱产量不低于50kg,估计A的概率; (2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关: 箱产量<50kg 箱产量≥50kg 旧养殖法 新养殖法 (3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01) n(ad?bc)2K?(a?b)(c?d)(a?c)(b?d) 2 广东省中山一中,朱欢收集整理,欢迎学习交流 (2017·新课标Ⅲ,18)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间20,25?,需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表: 最高气温 天数 ?15? ?10,20? ?15,25? ?25,30? ?30,35? ?35,40? ?20,2 16 36 25 7 4 以最高气温位于各区间的频率代替最高气温位于该区间的概率. (1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列; (2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值?