小学五年级举一反三电子教材 下载本文

第4讲 长方形、正方形的面积

一、知识要点

长方形的面积=长×宽,正方形的面积=边长×边长。掌握并能运用这两个面积公式,就能计算它们的面积。

但是,在平时的学习过程中,我们常常会遇到一些已知条件比较隐蔽、图形比较复杂、不能简单地用公式直接求出面积的题目。这就需要我们切实掌握有关概念,利用“割补”、“平移”、“旋转”等方法,使复杂的问题转化为普通的求长方形、正方形面积的问题,从而正确解答。

二、精讲精练

【例题1】 已知大正方形比小正方形边长多2厘米,大正方形比小正方形的面积大40平方厘米。求大、小正方形的面积各是多少平方厘米?

【思路导航】从图中可以看出,大正方形的面积比小正方形的面积大出的40平方厘米,可以分成三部分,其中A和B的面积相等。因此,用40平方厘米减去阴影部分的面积,再除以2就能得到长方形A和B的面积,再用A或B的面积除以2就是小正方形的边长。求到了小正方形的边长,计算大、小正方形的面积就非常简单了。

练习1:

1.有一块长方形草地,长20米,宽15米。在它的四周向外筑一条宽2米的小路,求小路的面积。

2.正方形的一组对边增加30厘米,另一组对边减少18厘米,结果得到一个与原正方形面积相等的长方形。原正方形的面积是多少平方厘米?

3.把一个长方形的长增加5分米,宽增加8分米后,得到一个面积比原长方形多181平方分米的正方形。求这个正方形的边长是多少分米?

【例题2】 一个大长方形被两条平行于它的两条边的线段分成四个较小的长方形,其中三个长方形的面积如下图所求,求第四个长方形的面积。

【思路导航】因为AE×CE=6,DE×EB=35,把两个式子相乘AE×CE×DE×EB=35×6,而CE×EB=14,所以AE×DE=35×6÷14=15。

练习2:

1.下图一个长方形被分成四个小长方形,其中三个长方形的面积分别是24平方厘米、30平方厘米和32平方厘米,求阴影部分的面积。

2.下面一个长方形被分成六个小长方形,其中四个长方形的面积如图所示(单位:平方厘米),求A和B的面积。

3.下图中阴影部分是边长5厘米的正方形,四块完全一样的长方形的宽是8厘米,求整个图形的面积。

【例题3】 把20分米长的线段分成两段,并且在每一段上作一正方形,已知两个正方形的面积相差40平方分米,大正方形的面积是多少平方分米?

- 9 -

【思路导航】我们可以把小正方形移至大正方形里面进行分析。两个正方形的面积差40平方分米就是图中的A和B两部分,如图。如果把B移到原来小正方形的上面,不难看出,A和B正好组成一个长方形,此长方形的面积是40平方分米,长20分米,宽是40

÷20=2(分米),即大、小两个正方形的边长相差2分米。因此,大正方形的边长就是(20+2)÷2=11(分米),面积是11×11=121(平方分米)。

练习3:

1.一块正方形,一边划出1.5米,另一边划出10米搞绿化,剩下的面积比原来减少了1350平方米。这块地原来的面积是多少平方米?

2.一个正方形,如果它的边长增加5厘米,那么,面积就比原来增加95平方厘米。原来正方形的面积是多少平方厘米?

3.有一个正方形草坪,沿草坪四周向外修建一米宽的小路,路面面积是80平方米。求草坪的面积。

【例题4】 有一个正方形ABCD如下图,请把这个正方形的面积扩大1倍,并画出来。 【思路导航】由于不知道正方形的边长和面积,所以,也没有办法计算出所画正方形的边长或面积。我们可以利用两个正方形之间的关系进行分析。以正方形的四条边为准,分别作出4个等腰直角三角形,如图中虚线部分,显然,虚线表示的正方形的面积就是原正方形面积的2倍。

练习4:

1.四个完全一样的长方形和一个小正方形组成了一个大正方形,如果大、小正方形的面积分别是49平方米和4平方米,求其中一个长方形的宽。

2.正图的每条边都垂直于与它相邻的边,并且28条边的长都相等。如果此图的周长是56厘米,那么,这个图形的面积是多少?

3.正图中,正方形ABCD的边长4厘米,求长方形EFGD的面积。

【例题5】 有一个周长是72厘米的长方形,它是由三个大小相等的正方形拼成的。一个正方形的面积是多少平方厘米?

【思路导航】三个同样大小的正方形拼成的长方形,它的周长是原正方形边长的8倍,正方形的边长为72÷8=9(厘米),一个正方形的面积就是9×9=81(平方厘米)。

练习5:1.五个同样大小的正方形拼成一个长方形,这个长方形的周长是36厘米,求每个正方形的面积是多少平方厘米?

2.有一张长方形纸,长12厘米,宽10厘米。从这张纸上剪下一个最大的正方形后,剩下部分的周长是多少厘米?

3.有一个小长方形,它和一个正方形拼成了一个大长方形ABCD(如下图),已知大长方形的面积是35平方厘米,且周长比原来小长方形的周长多10厘米。求原来小长方形的面积。

- 10 -

第5讲 分类数图形

一、知识要点

我们在数数的时候,遵循不重复、不遗漏的原则,不能使数出的结果准确。但是在数图形的个数的时候,往往就不容易了。分类数图形的方法能够帮助我们找到图形的规律,从而有秩序、有条理并且正确地数出图形的个数。

二、精讲精练

【例题1】 下面图形中有多少个正方形?

【思路导航】图中的正方形的个数可以分类数,如由一个小正方形组成的有6×3=18个,2×2的正方形有5×2=10个,3×3的正方形有4×1=4个。因此图中共有18+10+4=32个正方形。

练习1:

1.下图中共有多少个正方形? 2.下图中共有多少个正方形?

3.下图中共有多少个正方形,多少个三角形?

【例题2】 下图中共有多少个三角形?

【思路导航】为了保证不漏数又不重复,我们可以分类来数三角形,然后再把数出的各类三角形的个数相加。

(1)图中共有6个小三角形;

(2)由两个小三角形组合的三角形有3个; (3)由三个小三角形组合的三角形有4个; (4)由六个小三角形组合的三角形有1个。 所以共有6+3+4+1=14个三角形。 练习2:

1.下面图中共有多少个三角形?

2.数一数,图中共有多少个三角形。 3.数一数,图中共有多少个三角形?

【例题3】 数出下图中所有三角形的个数。

【思路导航】和三角形AFG一样形状的三角形有5个;和三角形ABF一样形状的三角形有10个;和三角形ABG一样形状的三角形有5个;和三角形ABE一样形的三角形有5个;和三角形AMD一样形状的三角形有5个,共35个三角形。

- 11 -

练习3:

数出下面图形中分别有多少个三角形。

【例题4】 如下图,平面上有12个点,可任意取其中四个点围成一个正方形,这样的正方形有多少个?

【思路导航】把相邻的两点连接起来可以得到下面图形,从图中可以看出: (1)最小的正方形有6个;

(2)由4个小正方形组合而成的正方形有2个; (3)中间还可围成2个正方形。 所以共有6+2+2=10个。 练习4:

1.下图中共有8个点,连接任意四点围成一个长方形,一共能围成多少个长方形? 2.下图中共有6个点,连接其中的三点围成一个三角形,一共能围成多少个三角形? 3.下图中共有9个点,连接其中的四个点围成一个梯形,一共能围成多少个梯形?

【例题5】 数一数,下图中共有多少个三角形? 【思路导航】我们可以分类来数:

1.单一的小三角形有16个;2.两个小三角形组合的有10个; 3.四个小三角形组合的有8个;4.八个小三角形组合的有2个。 所以,图中一共有16+10+8+2=36个三角形。 练习5:

1.图中共有( )个三角形。 2.图中共有( )个三角形。 3.图中共有( )个正方形。

- 12 -