ÓйØÓÚÒýÏòÌìÏßµÄÑо¿ÓëÉè¼Æ ÏÂÔØ±¾ÎÄ

3.4 ×ÜÌåÉè¼Æ¹æ»®

¾­¹ýÇ°ÃæµÄ¸ÅÊö£¬ÒѾ­¾ß±¸ÁËÉè¼Æ±¾´ÎÎåµ¥Ôª°ËľÌìÏßµÄËùÓÐÐÅÏ¢£¬ÏÖÔÚ½«Éè¼ÆÌìÏßµÄ×ÜÌå²ÎÊýÁгöÈçÏ£º

ÓÐÔ´Õñ×Ó³¤¶È£ºLa=0.46¦Ë ÓÐÔµÕñ×Ó°ë¾¶£ºa=0.0026¦Ë ·´ÏàÆ÷³¤¶È£ºL=0.8¦Ë ÒýÏòÆ÷³¤¶È£ºLr=0.506¦Ë ¸÷Õñ×Ó¼ä¼ä¾à£ºd=0.2¦Ë

ËÄ¡¢MATLAB·ÂÕæ

4.1 MATLAB·ÂÕæÔ´³ÌÐò

É貨³¤¦Ë=1m£¬ÆäMATLAB·ÂÕæ³ÌÐòÈçÏ£º clear

lambda=1; %²¨³¤

k=2*pi/lambda; %×ÔÓɿռäÏàÒÆ³£Êý u=4*pi*10^(-7); %×ÔÓɿռ䵼´ÅÂÊ e=8.854*10^(-12); %×ÔÓɿռä½éµç³£Êý a=0.0026*lambda; %ÓÐÔµÕñ×Ó°ë¾¶ LR=0.8*lambda; %·´ÏàÆ÷³¤¶È L=0.46*lambda; %ÓÐÔ´Õñ×Ó³¤¶È LD=0.506*lambda; %ÒýÏòÆ÷³¤¶È SR=0.2*lambda; %¸÷Õñ×Ó¼ä¼ä¾à SD=0.2*lambda; w=k/sqrt(u*e); y=120*pi; n=6;

N=5; %Õñ×ÓÊýÄ¿

16

dlr=LR/(N+1); dl=L/(N+1); dld=LD/(N+1);

point=zeros(n*(2*N+1),4); mid=zeros(n*N,3); for ii=1:2*N+1

point(ii,1:3)=[-SR LR/2-ii*LR/(2*(N+1)) dlr]; if rem(ii+point(ii,4),2)==0

mid((ii+point(ii,4))/2,:)=point(ii,1:3); end end

for ii=2*N+1+1:2*(2*N+1)

point(ii,2:4)=[L/2-(ii-(2*N+1))*L/(2*(N+1)) dl 1]; if rem(ii+point(ii,4),2)==0

mid((ii-point(ii,4))/2,2:3)=point(ii,2:3); end end

for ii=2*(2*N+1)+1:3*(2*N+1)

point(ii,:)=[SD LD/2-(ii-2*(2*N+1))*LD/(2*(N+1)) dld 2]; if rem(ii+point(ii,4),2)==0

mid((ii-point(ii,4))/2,:)=point(ii,1:3); end end

for ii=3*(2*N+1)+1:4*(2*N+1)

point(ii,:)=[2*SD LD/2-(ii-3*(2*N+1))*LD/(2*(N+1)) dld 3]; if rem(ii+point(ii,4),2)==0

mid((ii-point(ii,4))/2,:)=point(ii,1:3); end end

for ii=4*(2*N+1)+1:5*(2*N+1)

17

point(ii,:)=[3*SD LD/2-(ii-4*(2*N+1))*LD/(2*(N+1)) dld 4]; if rem(ii+point(ii,4),2)==0

mid((ii-point(ii,4))/2,:)=point(ii,1:3); end end

for ii=5*(2*N+1)+1:6*(2*N+1)

point(ii,:)=[4*SD LD/2-(ii-5*(2*N+1))*LD/(2*(N+1)) dld 5]; if rem(ii+point(ii,4),2)==0

mid((ii-point(ii,4))/2,:)=point(ii,1:3); end end

V=zeros(n*N,1); V(N+(N+1)/2)=1; U=ones(n*N,1); psi=zeros(n*(2*N+1)); for jj=1:n*(2*N+1) for kk=1:n*(2*N+1) if jj==kk

psi(jj,kk)=log(point(jj,3)/a)/(2*pi*point(jj,3))-(j*k)/(4*pi); else

psi(jj,kk)=exp(-j*k*sqrt((point(kk,1)-point(jj,1))^2+(point(kk,2)-point(jj,2))^2))/(4*pi*sqrt((point(kk,1)-point(jj,1))^2+(point(kk,2)-point(jj,2))^2));

end end end

Z=zeros(n*N); for pp=1:n*N

18

for qq=1:n*N

Z(pp,qq)=j*w*u*point(pp,3)*point(qq,3)*psi(2*pp+point(pp,4),2*qq+point(qq,4))+(psi(2*pp+point(pp,4)+1,2*qq+point(qq,4)+1)-psi(2*pp+point(pp,4)+1,2*qq+point(qq,4)-1)-psi(2*pp+point(pp,4)-1,2*qq+point(qq,4)+1)+psi(2*pp+point(pp,4)-1,2*qq+point(qq,4)-1))/(j*w*e); end end

si=Z\\V; %In t=1:n*N; figure(1);

plot(t,abs(si)),ylabel('I'),title('µçÁ÷·Ö²¼') in=U'*(Z\\V); i=V'*si; Zin=1/i

theta=(-pi:pi/100:pi)+eps; for m=1:length(theta)

E1=-j*w*u*exp(-j*k).*exp(j*k.*sqrt(mid(:,1).^2+mid(:,2).^2).*cos(abs(atan(mid(:,1)./(mid(:,2)+eps))-theta(m)))).*mid(:,3).*sin(theta(m))/(4*pi); Etheta(m)=E1'*si; end

Etheta=Etheta./max(Etheta); figure(2);

polar(theta,abs(Etheta)/max(abs(Etheta))),title('EÆ½Ãæ·½Ïòͼ (\\Phi = 0)');

Lo=find((abs(Etheta-1/sqrt(2))<0.05)==1);

G=abs(4*pi.*Etheta.*conj(Etheta)/(y*real(Zin).*si((N+1)/2).*conj(si((N+1)/2)))); Gmax=max(G)

19