∴x=3- ∴D(3-
t,y= t,
t, t),
又∵D在直线BC上, ∴ ∴t= ∴D(-
×(3- , ,
). t)+4=
t,
(3)①当0 △ABC在直线MN右侧部分为△AMN, ∴S= = ·AM·DF= ×t× t= t , ②当5 ∵AM=AN=t,AB=BC=5, ∴BN=t-5,CN=-5-(t-5)=10-t, 又∵△CNF∽△CBO, ∴ = , ∴ ∴NF= ∴S= = =- = , (10-t), - = ·AC·OB- ·CM·NF, ×6×4- t + ×(6-t)× t-12. (10-t), 20.在边长为1个单位长度的正方形网格中建立如图所示的平面直角坐标系,△ABC的顶点都在格点上,请解答下列问题: (1)①作出△ABC向左平移4个单位长度后得到的△A1B1C1 , 并写出点C1的坐标; ②作出△ABC关于原点O对称的△A2B2C2 , 并写出点C2的坐标; (2)已知△ABC关于直线l对称的△A3B3C3的顶点A3的坐标为(-4,-2),请直接写出直线l的函数解析式. 【答案】(1)解:如图所示, C1的坐标C1(-1,2), C2的坐标C2(-3,-2) (2)解:∵A(2,4),A3(-4,-2), ∴直线l的函数解析式:y=-x. 21.如图,在边长为1的正方形ABCD中,动点E、F分别在边AB、CD上,将正方形ABCD沿直线EF折叠,使点B的对应点M始终落在边AD上(点M不与点A、D重合),点C落在点N处,MN与CD交于点P,设BE=x, (1)当AM= 时,求x的值; (2)随着点M在边AD上位置的变化,△PDM的周长是否发生变化?如变化,请说明理由;如不变,请求出该定值; (3)设四边形BEFC的面积为S,求S与x之间的函数表达式,并求出S的最小值. 【答案】(1)解:由折叠性质可知:BE=ME=x,∵正方形ABCD边长为1 ∴AE=1-x, 在Rt△AME中, ∴AE+AM=ME , 即(1-x)+ 解得:x= . 2 2 2 2 =x , 2 (2)解:△PDM的周长不会发生变化,且为定值2. 连接BM、BP,过点B作BH⊥MN, ∵BE=ME, ∴∠EBM=∠EMB, 又∵∠EBC=∠EMN=90°, 即∠EBM+∠MBC=∠EMB+∠BMN=90°, ∴∠MBC=∠BMN, 又∵正方形ABCD, ∴AD∥BC,AB=BC, ∴∠AMB=∠MBC=∠BMN, 在Rt△ABM和Rt△HBM中, ∵ , ∴Rt△ABM≌Rt△HBM(AAS),