¼´ËùÒÔ£¬µ±
ʱ£¬
£¬¹Ê£¬£¬
£®
ËùÒÔ
£®×ÛÉÏ£¬ÊýÁÐ
µÄǰÏîºÍ
£®
£¨ÓôíλÏà¼õ·¨Ò²¿É£©
¿¼µã£º1¡¢µÈ²îÊýÁеÄͨÏʽ£»2¡¢´íλÏà¼õ·¨ÇóÊýÁеÄǰÏîºÍ£®
22. £¨±¾Ð¡ÌâÂú·Ö12·Ö£©ÒÑÖªÊýÁУ¨¢ñ£©ÇóÖ¤£º£¨¢ò£©Ö¤Ã÷£º£¨¢ó£©ÇóÖ¤£º
£»
£»
£® Âú×㣺
£¬
£¨
£©£®
¡¾´ð°¸¡¿(1)Ïê¼û½âÎö;(2) Ïê¼û½âÎö;(3) Ïê¼û½âÎö. ¡¾½âÎö¡¿ÊÔÌâ·ÖÎö£º£¨I£©È·¶¨ÊýÁеĵ¥µ÷ÐÔ£¬Ò×Ö¤µÃ£ºÊÔÌâ½âÎö£º £¨I£©
£¨¢ò£©ÓÉ£¨¢ñ£©¿ÉµÃ£º£¨¢ó£©Ò»·½ÃæÓÉÓÉ£¨¢ò£©µÃ£ºËùÒÔÀۼӵãºÁíÒ»·½ÃæÓÉ
¿ÉµÃ£ºÔʽ±äÐÎΪ
ËùÒÔ£ºÀÛ¼ÓµÃ
¿ÉµÃ
£¬
£¬
£¬ËùÒÔ
£¬ÀÛ¼ÓµÃ×ó²à.
...
£¬ÀÛ¼ÓµÃÓҲࣻÁí
£¬
£¬.
£»£¨II£©ÓÉ£¨¢ñ£©Ò×µÃ
£»£¨¢ó£©ÓÉ£¨¢ò£©
¸ß¶þÏÂѧÆÚÆÚÄ©ÊýѧÊÔ¾í
Ò»¡¢Ñ¡ÔñÌ⣺±¾´óÌâ¹²12СÌ⣬ÿСÌâ5·Ö£¬¹²60·Ö£¬ÔÚÿСÌâ¸ø³öµÄËĸöÑ¡ÏîÖУ¬Ö»ÓÐÒ»ÏîÊÇ×î·ûºÏÌâÄ¿
ÒªÇóµÄ¡£
1¡¢ÒÑÖª¼¯ºÏM?xlgx2?0£¬N?x2 A£®
????1?2x?1?22£¬x?Z£¬ÔòMC£®?0?
?N?
£¬??11? B£®??1? 0? D£®??1£¬2¡¢ÒÑÖªf(x)ÊǶ¨ÒåÔÚRÉϵÄżº¯Êý£¬ÇÒÒÔ2ΪÖÜÆÚ£¬Ôò¡°f(x)Ϊ[1£¬2]ÉϵÄÔöº¯Êý¡±ÊÇ¡°f(x)Ϊ[4£¬5]ÉÏ
µÄ¼õº¯Êý¡±µÄ
A£®³ä·Ö²»±ØÒªÌõ¼þ C£®³äÒªÌõ¼þ
B£®±ØÒª²»³ä·ÖÌõ¼þ D£®¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ
?1x?(),?1?x?03¡¢Èôº¯Êýf(x)??4£¬Ôòf(log43)? x?0?x?1?4,A£®
1 3xB£®
4 3C£®3 D£®4
4¡¢ÒÑÖªµã(a,b)ÔÚy?10ͼÏóÉÏ£¬ÔòÏÂÁеãÖв»¿ÉÄÜÔÚ´ËͼÏóÉϵÄÊÇ A£®(?a,)
1bB£®(a?1,10b) C£®(a?1,10b) D£®(2a,b)
25¡¢º¯Êýf(x)?ex?A£®(0,
1µÄÁãµãËùÔÚµÄÇø¼äÊÇ x1
) 2
B£®(,1) C£®(1,3x1233) D£®(,2)
226¡¢º¯Êýf(x)?x?8,g(x)?3?1£¬Ôò²»µÈʽf[g(x)]?0µÄ½â¼¯ÊÇ
A£®[1,??)
B£®[ln3,??)
C£®[1£¬ln3]
D£®[log32,??)
ex?17¡¢¸ø¶¨ÃüÌâp£ºº¯Êýy?ln[(1?x)(1?x)]Ϊżº¯Êý£»ÃüÌâq£ºº¯Êýy?xΪżº¯Êý£¬ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ
e?1
2A£®C£®
ÊǼÙÃüÌâ ÊÇÕæÃüÌâ
?14B£®D£®
ÊǼ٠ÊÇÕæ
8¡¢ÒÑÖªº¯Êýy?(mx?4x?m?2)A£®
?(m2?mx?1)µÄ¶¨ÒåÓòΪR,ÔòmµÄȡֵ·¶Î§ÊÇ
?5?1,?? B£®
??5?1,2 C£®(-2,2) D£®(?1?5,?1?5)
?9¡¢y?x2?5x?6µÄ¶¨ÒåÓòΪ
ln(x?1) B£®(1,2]
A£®[3,??)
C£®(1,2]?[3,??) D£®(1,2)?[3,??)
A B C D 11¡¢Éèf (x)£½lg2?xx2£¬Ôòf()?f()µÄ¶¨ÒåÓòΪ£¨ £© 2?x2xA£® B£®(£4,£1)?(1£¬4) £¨£4£¬0£©?£¨0£¬4£©C£®(£2,£1)?(1£¬2) D£®(£4,£2)?(2£¬4)
12¡¢ÒÑÖª¶¨ÒåÔÚRÉÏµÄÆæº¯Êýf(x)£¬Âú×ãf(x?4)??f(x),ÇÒÔÚÇø¼ä[0,2]ÉÏÊÇÔöº¯Êý,Ôò A. f(?25)?f(80)?f(11) B. f(80)?f(11)?f(?25) C. f(11)?f(80)?f(?25) D. f(?25)?f(11)?f(80)
µÚ¢ò¾í£¨·ÇÑ¡ÔñÌ⣬¹²90·Ö£©
¶þ¡¢Ìî¿ÕÌ⣺(±¾´óÌâ¹²4СÌ⣬ÿСÌâ5·Ö£¬¹²20·Ö¡£)
13¡¢ÒÑÖªº¯Êýf(x)Âú×ãf(x)?f(x?2)?2014£¬Èôf(0)?1£¬Ôòf(2014)?____.
?x?2,x?0?,Ôòº¯Êýg(x)?f(x)?xµÄÁãµãµÄ¸öÊýÊÇ ¸ö. 14¡¢ÒÑÖªº¯Êýf(x)??21?x?x?1,x?0??215¡¢É輯ºÏA?(??,a],B?(b,??),a?N,b?R,ÇÒA . 16¡¢ÉèP£º¹ØÓÚxµÄ²»µÈʽ2xBN?{2},Ôòa?bµÄÈ¡ÖµÇø¼äÊÇ
?aµÄ½â¼¯Îª?£¬Q£ºº¯Êýy?lg(ax2?x?a)µÄ¶¨ÒåÓòΪR£¬Èç¹ûPºÍQÓÐ
ÇÒ½öÓÐÒ»¸öÕýÈ·£¬ÔòaµÄÈ¡ÖµÇø¼äÊÇ .
Èý¡¢½â´ðÌ⣺(±¾´óÌâ¹²6СÌ⣬¹²70·Ö£¬½â´ðӦд³öÎÄ×Ö˵Ã÷£¬Ö¤Ã÷¹ý³Ì»òÑÝËã²½Öè¡£) 17¡¢ £¨±¾Ð¡ÌâÂú·Ö10·Ö£©
2ÒÑÖªº¯Êýy?x?4ax?2a?6(a?R)£¬Èôy?0ºã³ÉÁ¢£¬Çóf(a)?2?aa?3µÄÖµÓò
18¡¢£¨±¾Ð¡ÌâÂú·Ö12·Ö£© ¼Çº¯Êýf(x)?2?x?3µÄ¶¨ÒåÓòΪA£¬g(x)?lg[(x?a?1)(2a?x)](a?1)µÄ¶¨ÒåÓòΪB£® x?1(1) Ç󼯺ÏA£»
(2) ÈôB?A, ÇóʵÊýaµÄȡֵ·¶Î§£®
19¡¢£¨±¾Ð¡ÌâÂú·Ö12·Ö£©
ÒÑÖª¶þ´Îº¯Êýf(x)µÄ¶þ´ÎÏîϵÊýΪa£¬ÇÒ²»µÈʽf(x)£¾?2xµÄ½â¼¯Îª£¨1£¬3£©.
(1) Èô·½³Ìf(x)?6a?0ÓÐÁ½¸öÏàµÈµÄ¸ù,Çóf(x)µÄ½âÎöʽ; (2) Èôf(x)µÄ×î´óֵΪÕýÊý,ÇóaµÄȡֵ·¶Î§. 20¡¢£¨±¾Ð¡ÌâÂú·Ö12·Ö£©
x2?ax?4ÒÑÖªº¯Êýf(x)?(x?0)
x£¨1£©Èôf(x)ÎªÆæº¯Êý£¬ÇóaµÄÖµ£»
£¨2£©Èôf(x)ÔÚ[3,??)ÉϺã´óÓÚ0£¬ÇóaµÄȡֵ·¶Î§¡£ 21¡¢£¨±¾Ð¡ÌâÂú·Ö12·Ö£©
ÒÑÖªf(x)?logax,g(x)?2loga(2x?t?2),(a?0,a?1,t?R)
(1)µ±t?4,x??1,2?,ÇÒF(x)?g(x)?f(x)µÄ×îСֵΪ2ʱ£¬ÇóaµÄÖµ£» (2)µ±0?a?1,x??1,2?ʱ£¬ÓÐf(x)?g(x)ºã³ÉÁ¢£¬ÇóʵÊýtµÄȡֵ·¶Î§. 22¡¢£¨±¾Ð¡ÌâÂú·Ö12·Ö£©
ÒÑÖªº¯Êýg(x)?ax?2ax?1?b (a?0,b?1)£¬ÔÚÇø¼ä[2,23]ÉÏÓÐ×î´óÖµ4£¬×îСֵ1£¬É躯Êý
f(x)?
g(x)£® x£¨1£©Çóa¡¢bµÄÖµ¼°º¯Êýf(x)µÄ½âÎöʽ£»
£¨2£©Èô²»µÈʽf(2)?k?2?0ÔÚx?[?1,1]ʱºã³ÉÁ¢£¬ÇóʵÊýkµÄȡֵ·¶Î§£»
xx
£¨3£©Èç¹û¹ØÓÚxµÄ·½³Ìf(2?1)?t?(x42?1x?3)?0ÓÐÈý¸öÏàÒìµÄʵÊý¸ù£¬ÇóʵÊýtµÄȡֵ·¶Î§£®