(¸ß¶þÏÂÊýѧÆÚÄ©20·ÝºÏ¼¯)ɽ¶«Ê¡ÇൺÊи߶þÏÂѧÆÚÊýѧÆÚÄ©ÊÔ¾íºÏ¼¯ ÏÂÔØ±¾ÎÄ

¸ß¶þÏÂѧÆÚÆÚÄ©ÊýѧÊÔ¾í

Ò»¡¢Ñ¡ÔñÌ⣺±¾´óÌâ¹²12СÌ⣬ÿСÌâ5·Ö£¬ÔÚÿСÌâ¸ø³öµÄËĸöÑ¡ÏîÖУ¬Ö»ÓÐÒ»ÏîÊÇ·ûºÏÌâĿҪÇóµÄ£®

1£®¼¯ºÏA£½{x|y?x },B={y|y=log2x,x>0},ÔòA¡ÉBµÈÓÚ£¨ £© A£®R B.

C. [0,+¡Þ) D. (0,+¡Þ)

122£®Èôf(x)¶ÔÓÚÈÎÒâʵÊýxºãÓÐ2f(x)£­f(£­x)£½3x£«1£¬Ôòf(x)£½( ) A. x£­1 C. 2x£«1

2B. x£«1 D. 3x£«3

3£®ÒÑÖªº¯Êýy?x?bx?c£¬ÇÒf(1?x)?f(?x)£¬ÔòÏÂÁÐÃüÌâ³ÉÁ¢µÄÊÇ( ) A£®f(x)ÔÚÇø¼ä(??,1]ÉÏÊǼõº¯Êý B£®f(x)ÔÚÇø¼ä(??,]ÉÏÊǼõº¯Êý C£®f(x)ÔÚÇø¼ä(??,1]ÉÏÊÇÔöº¯Êý D£®f(x)ÔÚÇø¼ä(??,]ÉÏÊÇÔöº¯Êý

4£®ÏÂÁк¯ÊýÖУ¬¼ÈÊÇżº¯Êý£¬ÓÖÔÚÇø¼ä(0,??)Éϵ¥µ÷µÝ¼õµÄº¯ÊýÊÇ£¨ £© A. y?x B. y?x C. y?x D. y?x

5£®¡°a<£­2¡±ÊÇ¡°º¯Êýf(x)£½ax£«3ÔÚÇø¼ä[£­1,2]ÉÏ´æÔÚÁãµã¡±µÄ( ) A. ³ä·Ö²»±ØÒªÌõ¼þ C. ³ä·Ö±ØÒªÌõ¼þ 6£®º¯Êýf(x)£½

2x£­1

µÄ¶¨ÒåÓòΪ( ) log3x

B. (1£¬£«¡Þ) D. (0,1)¡È(1£¬£«¡Þ) B. ±ØÒª²»³ä·ÖÌõ¼þ D. ¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ

?2?12121213A. (0£¬£«¡Þ) C. (0,1)

7£®Ò»´Îº¯Êýy?ax?bÓë¶þ´Îº¯Êýy?ax?bx?cÔÚÍ¬Ò»×ø±êϵÖеÄͼÏó´óÖÂÊÇ£¨ £©

??2£«1£¬x<1

8£®ÒÑÖªº¯Êýf(x)£½?2

?x£«ax£¬x¡Ý1?

x

2y Oy yxxy OxOOxA B C D

£¬Èôf(f(0))£½4a£¬ÔòʵÊýaµÈÓÚ ( )

1

A.

2C. 2

4 B.

5 D. 9

?9£®Éèf(x)ÊǶ¨ÒåÔÚRÉÏµÄÆæº¯Êý£¬µ±x??ʱ£¬f(x)??x?x£¬Ôòf(?)? A. ?? B. ?? C. £± D. 3

a?log54£¬b??log53?£¬c?log45£¬Ôò£¨ £©

10£®É裮

A£®a?c?b B£®b?c?a C£®a?b?c D£®b?a?c

2£¨0£¬+?£©11£®ÏÂÁк¯ÊýÖУ¬¼ÈÊÇżº¯ÊýÓÖÔÚµ¥µ÷µÝÔöµÄº¯ÊýÊÇ

?x32y?x?1y?xy??x?1y?2A. B. C. D.

12£®Éèżº¯Êýf(x)Âú×ãf(x)=2x-4 (x?0£©£¬Ôò A.

C.

?xf?x?2??0?=

?xx??2»òx?4? B. ?xx?0»òx?4?

?xx?0»òx?6? D. ?xx??2»òx?2?

1¶þ¡¢Ìî¿ÕÌ⣺£¨Ã¿Ð¡Ìâ5·Ö£¬¹²20·Ö£©

? 113£®¼ÆËã(lg?lg25)?1002?_______£®

4?2x£¬ x£¾0

14£®ÒÑÖªº¯Êýf(x)£½?£¬Èôf(a)£«f(1)£½0£¬ÔòʵÊýaµÄÖµµÈÓÚ_____

?x£«1£¬x¡Ü0

15£®ÒÑÖª¼¯ºÏA={a,b,2},B={2,b,2a},ÇÒA¡ÉB=A¡ÈB£¬Ôòa=_______. 16£®Èôº¯Êýf(x)£½?

?3x£­?

??

2

£¬

£¬

ÇÒf(f(2))>7£¬ÔòʵÊýmµÄȡֵ·¶Î§Îª________£®

Èý¡¢½â´ðÌ⣺£¨¹²7¸öСÌ⣬×Ü·Ö70·Ö£¬½â´ðʱӦд³ö±ØÒªµÄÎÄ×Ö˵Ã÷¡¢Ö¤Ã÷¹ý³Ì»òÑÝËã²½Ö裩 17£®£¨±¾Ð¡ÌâÂú·Ö12·Ö£©

ijÉÌÈ˽«²ÊµçÏȰ´Ô­¼ÛÌá¸ß40?£¬È»ºóÔÚ¹ã¸æÉÏдÉÏ£¢´ó³ê±ö£¬°ËÕÛÓŻݣ¢½á¹ûÊÇÿ̨²Êµç±ÈÔ­¼Û¶à׬ÁË

270Ôª£¬Çóÿ̨²ÊµçµÄÔ­¼ÛΪ¶àÉÙÔª£¿

18£®£¨±¾Ð¡ÌâÂú·Ö10·Ö£©

É輯ºÏA={x|-1¡Üx¡Ü2},B={x|x-(2m+1)x+2m<0}. (1)µ±m<

2

1ʱ£¬»¯¼ò¼¯ºÏB£» 2(2)ÈôA¡ÈB=A£¬ÇóʵÊýmµÄȡֵ·¶Î§£»

(3)ÈôCRA¡ÉBÖÐÖ»ÓÐÒ»¸öÕûÊý£¬ÇóʵÊýmµÄȡֵ·¶Î§. 19£®£¨±¾Ð¡ÌâÂú·Ö12·Ö£©

Èô¶þ´Îº¯Êý

f(x)?ax2?bx?c (a,b?R)Âú×ãf(x?1)?f(x)?2x£¬ÇÒf(0)?1.

(1)Çóf(x)µÄ½âÎöʽ£»

(2)ÈôÔÚÇø¼ä[?1,?1]ÉÏ£¬²»µÈʽf(x)?2x?mºã³ÉÁ¢£¬ÇóʵÊýmµÄȡֵ·¶Î§.

20£®£¨±¾Ð¡ÌâÂú·Ö12·Ö£©

ÓÐÁ½¸öͶ×ÊÏîÄ¿A¡¢B£¬¸ù¾ÝÊг¡µ÷²éÓëÔ¤²â£¬AÏîÄ¿µÄÀûÈóÓëͶ×ʳÉÕý±È£¬Æä¹ØÏµÈçͼ¼×£¬BÏîÄ¿µÄÀûÈóÓëͶ×ʵÄËãÊõƽ·½¸ù³ÉÕý±È£¬Æä¹ØÏµÈçͼÒÒ.£¨×¢£ºÀûÈóÓëͶ×ʵ¥Î»£ºÍòÔª£©

£¨1£©·Ö±ð½«A¡¢BÁ½¸öͶ×ÊÏîÄ¿µÄÀûÈó±íʾΪͶ×Êx£¨ÍòÔª£©µÄº¯Êý¹ØÏµÊ½£»

£¨2£©ÏÖ½«x(0?x?10)ÍòԪͶ×ÊAÏîÄ¿, 10-xÍòԪͶ×ÊBÏîÄ¿.h(x)±íʾͶ×ÊAÏîÄ¿ËùµÃÀûÈóÓëͶ×ÊBÏîÄ¿ËùµÃÀûÈóÖ®ºÍ.Çóh(x)µÄ×î´óÖµ,²¢Ö¸³öxΪºÎֵʱ,h(x)È¡µÃ×î´óÖµ. 21£®£¨±¾Ð¡ÌâÂú·Ö14·Ö£©

xxf(x)?a?2?b?3ÒÑÖªº¯Êý£¬ÆäÖг£Êýa,bÂú×ãa?b?0

£¨1£©Èôa?b?0£¬ÅжϺ¯Êýf(x)µÄµ¥µ÷ÐÔ£»

£¨2£©Èôa?b?0£¬Çóf(x?1)?f(x)ʱµÄxµÄȡֵ·¶Î§.

Ç뿼ÉúÔÚµÚ22¡¢23¡¢24ÈýÌâÖÐÈÎѡһÌâ×ö´ð£¬Èç¹û¶à×ö£¬Ôò°´Ëù×öµÄµÚÒ»Ìâ¼Ç·Ö.´ðʱÓÃ2BǦ±ÊÔÚ´ðÌ⿨ÉϰÑËùÑ¡ÌâÄ¿µÄÌâºÅÍ¿ºÚ.

22.£¨±¾Ð¡ÌâÂú·Ö10·Ö£©Ñ¡ÐÞ4¡ª1: ¼¸ºÎÖ¤Ã÷Ñ¡½²£®

Èçͼ£¬ÔÚÕý¦¤ABCÖУ¬µãD¡¢E·Ö±ðÔÚ±ßBC, ACÉÏ,ÇÒBD?P.

A 11BC,CE?CA£¬AD£¬BEÏཻÓÚµã33E ÇóÖ¤£º(I) ËĵãP¡¢D¡¢C¡¢E¹² Ô²£»

(II) AP ¡ÍCP¡£

B P D

C

23.£¨±¾Ð¡ÌâÂú·Ö10·Ö£©Ñ¡ÐÞ4¡ª4: ×ø±êϵÓë²ÎÊý·½³Ì£®

1?x?1?t,??2(tΪ²ÎÊý), ÇúÏßC:?x?cos?, £¨?Ϊ²ÎÊý£©. ÒÑÖªÖ±Ïß?:?1?3?y?sin?,?y?t.?2? (I)Éè?ÓëC1ÏཻÓÚA,BÁ½µã,Çó|AB|£» (II)Èô°ÑÇúÏßC1Éϸ÷µãµÄºá×ø±êѹËõΪԭÀ´µÄ

31±¶,×Ý×ø±êѹËõΪԭÀ´µÄ±¶,µÃµ½ÇúÏßC2,ÉèµãPÊÇ

22ÇúÏßC2ÉϵÄÒ»¸ö¶¯µã,ÇóËüµ½Ö±Ïß?µÄ¾àÀëµÄ×îСֵ.

24£®£¨±¾Ð¡ÌâÂú·Ö10·Ö£©Ñ¡ÐÞ4¡ª5: ²»µÈʽѡ½²£®

ÒÑÖªº¯Êýf(x)?2x?a?a£®

(I)Èô²»µÈʽf(x)?6µÄ½â¼¯Îªx?2?x?3£¬ÇóʵÊýaµÄÖµ£»

(II)ÔÚ(I)µÄÌõ¼þÏ£¬Èô´æÔÚʵÊýnʹf(n)?m?f(?n)³ÉÁ¢£¬ÇóʵÊýmµÄȡֵ·¶Î§£®

²Î¿¼´ð°¸

Ò»¡¢Ñ¡ÔñÌâ: DBBAA DCCAD BB ¶þ¡¢Ìî¿ÕÌâ

??13¡¢£­20 14¡¢£­3 15¡¢0»òÈý¡¢½â´ðÌ⣺

1 16¡¢m<5 417£®Éè²ÊµçµÄÔ­¼ÛΪa£¬¡àa(1?0.4)?80??a?270£¬

¡à0.12a?270£¬½âµÃa?2250£®¡àÿ̨²ÊµçµÄÔ­¼ÛΪ2250Ôª£® 18£®¡ß²»µÈʽx-(2m+1)x+2m<0?(x-1)(x-2m)<0. (1)µ±m<

2

1ʱ£¬2m<1,¡à¼¯ºÏB={x|2m

¢Ùµ±m<

1ʱ,B={x|2m

11¡Üm<; 221ʱ,B=?,ÓÐB?A³ÉÁ¢; 21ʱ,B={x|1

¢Ûµ±m>

12},

1¡Üm¡Ü1. 2¢Ùµ±m<

1ʱ,B={x|2m