¸ß¶þÏÂѧÆÚÆÚÄ©ÊýѧÊÔ¾í
Ò»¡¢Ñ¡ÔñÌ⣺±¾´óÌâ¹²12СÌ⣬ÿСÌâ5·Ö£¬ÔÚÿСÌâ¸ø³öµÄËĸöÑ¡ÏîÖУ¬Ö»ÓÐÒ»ÏîÊÇ·ûºÏÌâĿҪÇóµÄ£®
1£®¼¯ºÏA£½{x|y?x },B={y|y=log2x,x>0},ÔòA¡ÉBµÈÓÚ£¨ £© A£®R B.
C. [0,+¡Þ) D. (0,+¡Þ)
122£®Èôf(x)¶ÔÓÚÈÎÒâʵÊýxºãÓÐ2f(x)£f(£x)£½3x£«1£¬Ôòf(x)£½( ) A. x£1 C. 2x£«1
2B. x£«1 D. 3x£«3
3£®ÒÑÖªº¯Êýy?x?bx?c£¬ÇÒf(1?x)?f(?x)£¬ÔòÏÂÁÐÃüÌâ³ÉÁ¢µÄÊÇ( ) A£®f(x)ÔÚÇø¼ä(??,1]ÉÏÊǼõº¯Êý B£®f(x)ÔÚÇø¼ä(??,]ÉÏÊǼõº¯Êý C£®f(x)ÔÚÇø¼ä(??,1]ÉÏÊÇÔöº¯Êý D£®f(x)ÔÚÇø¼ä(??,]ÉÏÊÇÔöº¯Êý
4£®ÏÂÁк¯ÊýÖУ¬¼ÈÊÇżº¯Êý£¬ÓÖÔÚÇø¼ä(0,??)Éϵ¥µ÷µÝ¼õµÄº¯ÊýÊÇ£¨ £© A. y?x B. y?x C. y?x D. y?x
5£®¡°a<£2¡±ÊÇ¡°º¯Êýf(x)£½ax£«3ÔÚÇø¼ä[£1,2]ÉÏ´æÔÚÁãµã¡±µÄ( ) A. ³ä·Ö²»±ØÒªÌõ¼þ C. ³ä·Ö±ØÒªÌõ¼þ 6£®º¯Êýf(x)£½
2x£1
µÄ¶¨ÒåÓòΪ( ) log3x
B. (1£¬£«¡Þ) D. (0,1)¡È(1£¬£«¡Þ) B. ±ØÒª²»³ä·ÖÌõ¼þ D. ¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ
?2?12121213A. (0£¬£«¡Þ) C. (0,1)
7£®Ò»´Îº¯Êýy?ax?bÓë¶þ´Îº¯Êýy?ax?bx?cÔÚÍ¬Ò»×ø±êϵÖеÄͼÏó´óÖÂÊÇ£¨ £©
??2£«1£¬x<1
8£®ÒÑÖªº¯Êýf(x)£½?2
?x£«ax£¬x¡Ý1?
x
2y Oy yxxy OxOOxA B C D
£¬Èôf(f(0))£½4a£¬ÔòʵÊýaµÈÓÚ ( )
1
A.
2C. 2
4 B.
5 D. 9
?9£®Éèf(x)ÊǶ¨ÒåÔÚRÉÏµÄÆæº¯Êý£¬µ±x??ʱ£¬f(x)??x?x£¬Ôòf(?)? A. ?? B. ?? C. £± D. 3
a?log54£¬b??log53?£¬c?log45£¬Ôò£¨ £©
10£®É裮
A£®a?c?b B£®b?c?a C£®a?b?c D£®b?a?c
2£¨0£¬+?£©11£®ÏÂÁк¯ÊýÖУ¬¼ÈÊÇżº¯ÊýÓÖÔÚµ¥µ÷µÝÔöµÄº¯ÊýÊÇ
?x32y?x?1y?xy??x?1y?2A. B. C. D.
12£®Éèżº¯Êýf(x)Âú×ãf(x)=2x-4 (x?0£©£¬Ôò A.
C.
?xf?x?2??0?=
?xx??2»òx?4? B. ?xx?0»òx?4?
?xx?0»òx?6? D. ?xx??2»òx?2?
1¶þ¡¢Ìî¿ÕÌ⣺£¨Ã¿Ð¡Ìâ5·Ö£¬¹²20·Ö£©
? 113£®¼ÆËã(lg?lg25)?1002?_______£®
4?2x£¬ x£¾0
14£®ÒÑÖªº¯Êýf(x)£½?£¬Èôf(a)£«f(1)£½0£¬ÔòʵÊýaµÄÖµµÈÓÚ_____
?x£«1£¬x¡Ü0
15£®ÒÑÖª¼¯ºÏA={a,b,2},B={2,b,2a},ÇÒA¡ÉB=A¡ÈB£¬Ôòa=_______. 16£®Èôº¯Êýf(x)£½?
?3x£?
??
2
£¬
£¬
ÇÒf(f(2))>7£¬ÔòʵÊýmµÄȡֵ·¶Î§Îª________£®
Èý¡¢½â´ðÌ⣺£¨¹²7¸öСÌ⣬×Ü·Ö70·Ö£¬½â´ðʱӦд³ö±ØÒªµÄÎÄ×Ö˵Ã÷¡¢Ö¤Ã÷¹ý³Ì»òÑÝËã²½Ö裩 17£®£¨±¾Ð¡ÌâÂú·Ö12·Ö£©
ijÉÌÈ˽«²ÊµçÏȰ´Ô¼ÛÌá¸ß40?£¬È»ºóÔÚ¹ã¸æÉÏдÉÏ£¢´ó³ê±ö£¬°ËÕÛÓŻݣ¢½á¹ûÊÇÿ̨²Êµç±ÈÔ¼Û¶à׬ÁË
270Ôª£¬Çóÿ̨²ÊµçµÄÔ¼ÛΪ¶àÉÙÔª£¿
18£®£¨±¾Ð¡ÌâÂú·Ö10·Ö£©
É輯ºÏA={x|-1¡Üx¡Ü2},B={x|x-(2m+1)x+2m<0}. (1)µ±m<
2
1ʱ£¬»¯¼ò¼¯ºÏB£» 2(2)ÈôA¡ÈB=A£¬ÇóʵÊýmµÄȡֵ·¶Î§£»
(3)ÈôCRA¡ÉBÖÐÖ»ÓÐÒ»¸öÕûÊý£¬ÇóʵÊýmµÄȡֵ·¶Î§. 19£®£¨±¾Ð¡ÌâÂú·Ö12·Ö£©
Èô¶þ´Îº¯Êý
f(x)?ax2?bx?c (a,b?R)Âú×ãf(x?1)?f(x)?2x£¬ÇÒf(0)?1.
(1)Çóf(x)µÄ½âÎöʽ£»
(2)ÈôÔÚÇø¼ä[?1,?1]ÉÏ£¬²»µÈʽf(x)?2x?mºã³ÉÁ¢£¬ÇóʵÊýmµÄȡֵ·¶Î§.
20£®£¨±¾Ð¡ÌâÂú·Ö12·Ö£©
ÓÐÁ½¸öͶ×ÊÏîÄ¿A¡¢B£¬¸ù¾ÝÊг¡µ÷²éÓëÔ¤²â£¬AÏîÄ¿µÄÀûÈóÓëͶ×ʳÉÕý±È£¬Æä¹ØÏµÈçͼ¼×£¬BÏîÄ¿µÄÀûÈóÓëͶ×ʵÄËãÊõƽ·½¸ù³ÉÕý±È£¬Æä¹ØÏµÈçͼÒÒ.£¨×¢£ºÀûÈóÓëͶ×ʵ¥Î»£ºÍòÔª£©
£¨1£©·Ö±ð½«A¡¢BÁ½¸öͶ×ÊÏîÄ¿µÄÀûÈó±íʾΪͶ×Êx£¨ÍòÔª£©µÄº¯Êý¹ØÏµÊ½£»
£¨2£©ÏÖ½«x(0?x?10)ÍòԪͶ×ÊAÏîÄ¿, 10-xÍòԪͶ×ÊBÏîÄ¿.h(x)±íʾͶ×ÊAÏîÄ¿ËùµÃÀûÈóÓëͶ×ÊBÏîÄ¿ËùµÃÀûÈóÖ®ºÍ.Çóh(x)µÄ×î´óÖµ,²¢Ö¸³öxΪºÎֵʱ,h(x)È¡µÃ×î´óÖµ. 21£®£¨±¾Ð¡ÌâÂú·Ö14·Ö£©
xxf(x)?a?2?b?3ÒÑÖªº¯Êý£¬ÆäÖг£Êýa,bÂú×ãa?b?0
£¨1£©Èôa?b?0£¬ÅжϺ¯Êýf(x)µÄµ¥µ÷ÐÔ£»
£¨2£©Èôa?b?0£¬Çóf(x?1)?f(x)ʱµÄxµÄȡֵ·¶Î§.
Ç뿼ÉúÔÚµÚ22¡¢23¡¢24ÈýÌâÖÐÈÎѡһÌâ×ö´ð£¬Èç¹û¶à×ö£¬Ôò°´Ëù×öµÄµÚÒ»Ìâ¼Ç·Ö.´ðʱÓÃ2BǦ±ÊÔÚ´ðÌ⿨ÉϰÑËùÑ¡ÌâÄ¿µÄÌâºÅÍ¿ºÚ.
22.£¨±¾Ð¡ÌâÂú·Ö10·Ö£©Ñ¡ÐÞ4¡ª1: ¼¸ºÎÖ¤Ã÷Ñ¡½²£®
Èçͼ£¬ÔÚÕý¦¤ABCÖУ¬µãD¡¢E·Ö±ðÔÚ±ßBC, ACÉÏ,ÇÒBD?P.
A 11BC,CE?CA£¬AD£¬BEÏཻÓÚµã33E ÇóÖ¤£º(I) ËĵãP¡¢D¡¢C¡¢E¹² Ô²£»
(II) AP ¡ÍCP¡£
B P D
C
23.£¨±¾Ð¡ÌâÂú·Ö10·Ö£©Ñ¡ÐÞ4¡ª4: ×ø±êϵÓë²ÎÊý·½³Ì£®
1?x?1?t,??2(tΪ²ÎÊý), ÇúÏßC:?x?cos?, £¨?Ϊ²ÎÊý£©. ÒÑÖªÖ±Ïß?:?1?3?y?sin?,?y?t.?2? (I)Éè?ÓëC1ÏཻÓÚA,BÁ½µã,Çó|AB|£» (II)Èô°ÑÇúÏßC1Éϸ÷µãµÄºá×ø±êѹËõΪÔÀ´µÄ
31±¶,×Ý×ø±êѹËõΪÔÀ´µÄ±¶,µÃµ½ÇúÏßC2,ÉèµãPÊÇ
22ÇúÏßC2ÉϵÄÒ»¸ö¶¯µã,ÇóËüµ½Ö±Ïß?µÄ¾àÀëµÄ×îСֵ.
24£®£¨±¾Ð¡ÌâÂú·Ö10·Ö£©Ñ¡ÐÞ4¡ª5: ²»µÈʽѡ½²£®
ÒÑÖªº¯Êýf(x)?2x?a?a£®
(I)Èô²»µÈʽf(x)?6µÄ½â¼¯Îªx?2?x?3£¬ÇóʵÊýaµÄÖµ£»
(II)ÔÚ(I)µÄÌõ¼þÏ£¬Èô´æÔÚʵÊýnʹf(n)?m?f(?n)³ÉÁ¢£¬ÇóʵÊýmµÄȡֵ·¶Î§£®
²Î¿¼´ð°¸
Ò»¡¢Ñ¡ÔñÌâ: DBBAA DCCAD BB ¶þ¡¢Ìî¿ÕÌâ
??13¡¢£20 14¡¢£3 15¡¢0»òÈý¡¢½â´ðÌ⣺
1 16¡¢m<5 417£®Éè²ÊµçµÄÔ¼ÛΪa£¬¡àa(1?0.4)?80??a?270£¬
¡à0.12a?270£¬½âµÃa?2250£®¡àÿ̨²ÊµçµÄÔ¼ÛΪ2250Ôª£® 18£®¡ß²»µÈʽx-(2m+1)x+2m<0?(x-1)(x-2m)<0. (1)µ±m<
2
1ʱ£¬2m<1,¡à¼¯ºÏB={x|2m ¢Ùµ±m< 1ʱ,B={x|2m 11¡Üm<; 221ʱ,B=?,ÓÐB?A³ÉÁ¢; 21ʱ,B={x|1 ¢Ûµ±m> 1 1¡Üm¡Ü1. 2¢Ùµ±m<