.
的对称轴与线段y=0(1≤x≤3)有交点,可以得到c的取值范围,从而可以解答本题.
【解答】解:∵抛物线y=x2+bx+c(其中b,c是常数)过点A(2,6),且抛物线的对称轴与线段y=0(1≤x≤3)有交点, ∴
解得6≤c≤14, 故选A.
【点评】本题考查二次函数的性质、解不等式,解题关键是明确题意,列出相应的关系式.
10.(4分)我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是( )
A.84 B.336 C.510 D.1326
【分析】类比于现在我们的十进制“满十进一”,可以表示满七进一的数为:千位上的数×73+百位上的数×72+十位上的数×7+个位上的数. 【解答】解:1×73+3×72+2×7+6=510, 故选C.
【点评】本题是以古代“结绳计数”为背景,按满七进一计算自孩子出生后的天数,运用了类比的方法,根据图中的数学列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力.
二、填空题(本大题有6小题,每小题5分,共30分) 11.(5分)分解因式:a3﹣9a= a(a+3)(a﹣3) .
'.
.
【分析】本题应先提出公因式a,再运用平方差公式分解. 【解答】解:a3﹣9a=a(a2﹣32)=a(a+3)(a﹣3).
【点评】本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
12.(5分)不等式
>+2的解是 x>﹣3 .
【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.
【解答】解:去分母,得:3(3x+13)>4x+24, 去括号,得:9x+39>4x+24, 移项,得:9x﹣4x>24﹣39, 合并同类项,得:5x>﹣15, 系数化为1,得:x>﹣3, 故答案为:x>﹣3.
【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.
13.(5分)如图1,小敏利用课余时间制作了一个脸盆架,图2是它的截面图,垂直放置的脸盆与架子的交点为A,B,AB=40cm,脸盆的最低点C到AB的距离为10cm,则该脸盆的半径为 25 cm.
【分析】设圆的圆心为O,连接OA,OC,OC与AB交于点D,设⊙O半径为R,在RT△AOD中利用勾股定理即可解决问题.
'.
.
【解答】解;如图,设圆的圆心为O,连接OA,OC,OC与AB交于点D,设⊙O半径为R, ∵OC⊥AB,
∴AD=DB=AB=20,∠ADO=90°, 在RT△AOD中,∵OA2=OD2+AD2, ∴R2=202+(R﹣10)2, ∴R=25. 故答案为25.
【点评】本题考查垂径定理、勾股定理等知识,解题的关键是学会添加常用辅助线,利用勾股定理列方程解决问题,属于中考常考题型.
14.(5分)书店举行购书优惠活动:
①一次性购书不超过100元,不享受打折优惠; ②一次性购书超过100元但不超过200元一律打九折; ③一次性购书超过200元一律打七折.
小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是 248或296 元.
【分析】设第一次购书的原价为x元,则第二次购书的原价为3x元.根据x的取值范围分段考虑,根据“付款金额=第一次付款金额+第二次付款金额”即可列出关于x的一元一次方程,解方程即可得出结论.
【解答】解:设第一次购书的原价为x元,则第二次购书的原价为3x元, 依题意得:①当0<x≤解得:x=57.35(舍去); ②当
'.
时,x+3x=229.4,
<x≤时,x+×3x=229.4,
.
解得:x=62,
此时两次购书原价总和为:4x=4×62=248; ③当
<x≤100时,x+
×3x=229.4,
解得:x=74,
此时两次购书原价总和为:4x=4×74=296; ④当100<x≤200时,
x+
×3x=229.4,
解得:x≈76.47(舍去); ⑤当x>200时,
x+
×3x=229.4,
解得:x≈81.93(舍去).
综上可知:小丽这两次购书原价的总和是248或296元. 故答案为:248或296.
【点评】本题考查了一元一次方程的应用,解题的关键是分段考虑,结合熟练关系找出每段x区间内的关于x的一元一次方程.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程(或方程组)是关键.
15.(5分)如图,已知直线l:y=﹣x,双曲线y=,在l上取一点A(a,﹣a)(a>0),过A作x轴的垂线交双曲线于点B,过B作y轴的垂线交l于点C,过C作x轴的垂线交双曲线于点D,过D作y轴的垂线交l于点E,此时E与A重合,并得到一个正方形ABCD,若原点O在正方形ABCD的对角线上且分这条对角线为1:2的两条线段,则a的值为 或 .
【分析】根据点的选取方法找出点B、C、D的坐标,由两点间的距离公式表示出线段OA、OC的长,再根据两线段的关系可得出关于a的一元二次方程,解方程即可得出结论.
'.