化工原理课后习题答案 - 天津大学出版社主编夏清 下载本文

当p表= 0时,扩大室液面平齐 即 π (D/2)(h2-h1)= π(d/2)R h2-h1 = 3 mm p表= 2.57×10Pa

7.列管换热气 的管束由121根θ×2.5mm的钢管组成。空气以9m/s速度在列管内流动。空气在管内的平均温度为50℃﹑压强为196×10Pa(表压),当地大气压为98.7×10Pa 试求:⑴ 空气的质量流量;⑵ 操作条件下,空气的体积流量;⑶ 将⑵的计算结果换算成标准状况下空气的体积流量。

解:空气的体积流量 VS = uA = 9×π/4 ×0.02 ×121 = 0.342 m/s 质量流量 ws =VSρ=VS ×(MP)/(RT)

= 0.342×[29×(98.7+196)]/[8.315×323]=1.09㎏/s

换算成标准状况 V1P1/V2P2 =T1/T2

VS2 = P1T2/P2T1 ×VS1 = (294.7×273)/(101×323) × 0.342 = 0.843 m/s

8 .高位槽内的水面高于地面8m,水从θ108×4mm的管道中流出,管路出口高于地面2m。在本题特定条件下,水流经系统的能量损失可按∑hf = 6.5 u 计算,其中u为水在管道的流速。试计算:

⑴ A—A 截面处水的流速; ⑵ 水的流量,以m/h计。

分析:此题涉及的是流体动力学,有关流体动力学主要是能量恒算问题,一般运用的是柏努力方程式。运用柏努力方程式解题的关键是找准截面和基准面,对于本题来说,合适的截面是高位槽1—1和出管口 2—2,如图所示,选取地面为基准面。

解:设水在水管中的流速为u ,在如图所示的1—1 ,2—2处列柏努力方程

Z1g + 0 + P1/ρ= Z2g+ u/2 + P2/ρ + ∑hf (Z1 - Z2)g = u/2 + 6.5u 代入数据 (8-2)×9.81 = 7u , u = 2.9m/s 换算成体积流量

VS = uA= 2.9 ×π/4 × 0.1 × 3600

2

22

22

,

,

,

,

3

'

2

3

2

3

3

3

2

22

= 82 m/h

9. 20℃ 水以2.5m/s的流速流经θ38×2.5mm的水平管,此管以锥形管和另一θ53×3m的水平管相连。如本题附图所示,在锥形管两侧A 、B处各插入一垂直玻璃管以观察两截面的压强。若水流经A ﹑B两截面的能量损失为1.5J/㎏,求两玻璃管的水面差(以mm计),并在本题附图中画出两玻璃管中水面的相对位置。

分析:根据水流过A、B两截面的体积流量相同和此两截面处的伯努利方程列等式求解

解:设水流经A﹑B两截面处的流速分别为uA、 uB uAAA = uBAB

∴ uB = (AA/AB )uA = (33/47)×2.5 = 1.23m/s 在A﹑B两截面处列柏努力方程

Z1g + u1/2 + P1/ρ = Z2g+ u2/2 + P2/ρ +

∑hf

∵ Z1 = Z2

∴ (P1-P2)/ρ = ∑hf +(u1-u2)/2 g(h1-h 2)= 1.5 + (1.23-2.5) /2 h1-h 2 = 0.0882 m = 88.2 mm

10.用离心泵把20℃的水从贮槽送至水洗塔顶部,槽内水位维持恒定,各部分相对位置如本题附图所示。管路的直径均为Ф76×2.5mm,在操作条件下,泵入口处真空表的读数为24.66

×103Pa,水流经吸入管与排处管(不包括喷头)的能量损失可分别按∑hf,1=2u2,∑hf,2=10u计算,由于管径不变,故式中u为吸入或排出管的流速m/s。排水管与喷头连接处的压强为98.07×103Pa(表压)。试求泵的有效功率。

分析:此题考察的是运用柏努力方程求算管路系统所要求的有效功率把整个系统分成两部分来处理,

从槽面到真空表段的吸入管和从真空表到排出口段的排出管,在两段分别列柏努力方程。

2

2

2

2

22

22

3

即 两玻璃管的水面差为88.2mm

解:总能量损失∑hf=∑hf+,1∑hf,2

u1=u2=u=2u+10u2=12u2

在截面与真空表处取截面作方程: z0g+u0/2+P0/ρ=z1g+u/2+P1/ρ+∑hf,1 ( P0-P1)/ρ= z1g+u/2 +∑hf,1 ∴u=2m/s ∴ ws=uAρ=7.9kg/s

在真空表与排水管-喷头连接处取截面 z1g+u/2+P1/ρ+We=z2g+u/2+P2/ρ+∑hf,2

∴We= z2g+u/2+P2/ρ+∑hf,2—( z1g+u/2+P1/ρ) =12.5×9.81+(98.07+24.66)/998.2×103+10×22

=285.97J/kg

Ne= Wews=285.97×7.9=2.26kw

11.本题附图所示的贮槽内径D为2m,槽底与内径d0为33mm的钢管相连,槽内无液体补充,其液面高度h0为2m(以管子中心线为基准)。液体在本题管内流动时的全部能量损失可按∑hf=20u2公式来计算,式中u为液体在管内的流速m/s。试求当槽内液面下降1m所需的时间。

分析:此题看似一个普通的解柏努力方程的题,分析题中槽内无液体补充,则管内流速并不是一个定值而是一个关于液面高度的函数,抓住槽内和管内的体积流量相等列出一个微分方程,积分求解。

解:在槽面处和出口管处取截面1-1,2-2列柏努力方程 h1g=u/2+∑hf =u/2+20u ∴u=(0.48h)=0.7h

1/2

1/2

2

2

2

2

2

2

2

2

2

2

2

槽面下降dh,管内流出uA2dt的液体 ∴Adh=uA2dt=0.7hA2dt

∴dt=A1dh/(A20.7h)

对上式积分:t=1.⒏h

12.本题附图所示为冷冻盐水循环系统,盐水的密度为1100kg/m3,循环量为36m3。管路的直径相同,盐水由A

1/21/2

流经两个换热器而至B的能量损失为98.1J/kg,由B流至A的能量损失为49J/kg,试求:(1)若泵的效率为70%时,泵的抽功率为若干kw?(2)若A处的压强表读数为245.2×103Pa时,B处的压强表读数为若干Pa?

分析:本题是一个循环系统,盐水由A经两个换热器被冷却后又回到A继续被冷却,很明显可以在A-换热器-B和B-A两段列柏努利方程求解。 解:(1)由A到B截面处作柏努利方程 0+uA2/2+PA/ρ1=ZBg+uB2/2+PB/ρ+9.81 管径相同得uA=uB ∴(PA-PB)/ρ=ZBg+9.81

由B到A段,在截面处作柏努力方程B ZBg+uB2/2+PB/ρ+We=0+uA2+PA/ρ+49 ∴We=(PA-PB)/ρ- ZBg+49=98.1+49=147.1J/kg ∴WS=VSρ=36/3600×1100=11kg/s Ne= We×WS=147.1×11=1618.1w

泵的抽功率N= Ne /76%=2311.57W=2.31kw (2)由第一个方程得(PA-PB)/ρ=ZBg+9.81得

PB=PA-ρ(ZBg+9.81)

=245.2×103-1100×(7×9.81+98.1) =6.2×10Pa

13. 用压缩空气将密度为1100kg/m的腐蚀性液体自低位槽送到高位槽,两槽的液位恒定。管路直径均为ф60×3.5mm,其他尺寸见本题附图。各管段的能量损失为∑hf,

AB

3

4

=∑hf,CD=u,∑hf,BC=1.18u。两压差计中的指示液均

22

为水银。试求当R1=45mm,h=200mm时:(1)压缩空气的

压强P1为若干?(2)U管差压计读数R2为多少? 解:对上下两槽取截面列柏努力方程

0+0+P1/ρ=Zg+0+P2/ρ+∑hf ∴P1= Zgρ+0+P2 +ρ∑hf

=10×9.81×1100+1100(2u+1.18u) =107.91×103+3498u2

在压强管的B,C处去取截面,由流体静力学方程得

2

2