从洛必达法则谈起 下载本文

XXXX数学与计算科学学院2011届毕业论文

证明:(1)极限为有限数l的情况.

?1记x0?y0?0,考察托普里兹数表tnk?(xk?xk?1)xn,n?1,2,???,k?1,2,???,n 用nyn?yn?1这数表对数列un?,n?1,2,???,作变换得,Vn??tnkuk

xn?xn?1k?1??(xk?xk?1)x(xn?xn?1)(yn?yn?1)?x?1n?1k?1n?1n?(yk?yk?1)?limk?1nyn?l,因limun?l,

x??x??xn由引理3.1.2得,limVn?l,即limx??x??yn?l. xn (2)极限为??的情况.

因已知limn??yn?yn?1x?x???,所以limnn?1?0,利用(1)中的结论,只要证明ynn??y?yxn?xn?1nn?1xny?0,limn???(问题得证).因xn严格递增,

x??xynn严格递增且limyn???,则有limn??x??要证yn严格递增只要

yn?yn?1y?yn?1?1.事实上limn???,对M?1,?N?0,当

n??xn?xn?1xn?xn?1n?N时,有

yn?yn?1?1,yn?yn?1?xn?xn?1?0,即n?N时,yn严格递增,在上式

xn?xn?1中令n?N?1,N?2,???,k,然后相加,可得yk?yn?xk?xn,令k??,知yk???. (3)极限为??的情况.

只要令yn??zn,即可转化为(2)中的情况. 同理可证定理3.1.2.

3.2“施笃兹定理在求3.2.1 求“

?0”型和“”型数列极限上的应用

0??”型的数列不定式的极限 ??施笃兹定理是求解“”型的数列不定式极限的有效工具,从这点意义上讲,施笃兹

?定理与洛必达法则具有同等效应.

1k?2k?????nk例3.2.1 求极限lim.

n???nk?1第9页 共18页

XXXX数学与计算科学学院2011届毕业论文

解:设xn?1k?2k?????nk,yn?nk?1,显然数列{yn},{xn}满足定理3.1.1的的条

xnxn?xn?1nk件,由定理3.1.1可得:lim. ?lim?limk?1k?1n???yn???y?yn???n?(n?1)nnn?1应用二项展开式:(n?1)k?1?nk?1?(k?1)nk?k(k?1)k?1n???? 2!xnnk?lim则有lim

n???yn???k(k?1)n(k?1)nk?nk?1????2!1

n???k(k?1)11(k?1)??o()2!nn1 ?

k?1 ?lim 3.2.2 求“

0”型的数列不定式的极限 0例3.2.2 设数列{xn},{yn}满足xn?aba1a2bb??????k ,yn?1?2?????k,nn2nknn2nk其中ai,bi?R?,i?1,2,???,k,求极限limxn

n???yn解:由已知条件可知,limxn?limyn?0由定理3.1.2可得:

n???n???n???limxnx?x?limnn?1ynn???yn?yn?1akkaan?lim?limk?k n???bn???bbkkkkn

3.3 施笃兹定理在求待定型数列极限上的应用

应注意到在施笃兹定理的条件中,并没有要求limxn???,因此,可用施笃兹定理来

n???求待定型的数列不定式的极限.

例3.3.1 设

?an?1?n收敛,数列{pn}为单调递增的正项数列,且limpn???,证明:

n???n???limp1a1?p2a2?????pnan?0.

pn第10页 共18页

XXXX数学与计算科学学院2011届毕业论文

证明:令An?a1?a2?????an,n?1,2,???,且设limAn?A,则有

n???a1?A1,an?An?An?1,n?2,3,???,

于是有p1a1?p2a2?????pnan?p1A1?p2(A2?A1)?????pn(An?An?1)

?A1(p1?p2)?A2(p2?p3)?????An?1(pn?1?pn)?pnAn 再令Bn?A1(p1?p2)?A2(p2?p3)?????An?1(pn?1?pn),则有

p1a1?p2a2?????pnanBn??An

pnpn又因为limAn?A,所以由定理3.1.1得limn???BnB?BnA(p?pn?1) ?limn?1?limnnn???pn???pn????pp?pnn?1nn?1nAn(pn?pn?1)?lim(?An)??A, n???pn?1?pn ?limn???所以limn???p1a1?p2a2?????pnan??A?A?0.

pn例3.3.2 给定序列{an},使得序列bn?pan?qan?1(n?1,2,???)是收敛的.如果p?q, 试证序列{an}收敛.

证明:因为p?q,所以p?q?0,q?0.若设序列?n?b?bb?an,?n??n, p?qqn?1,2,???,在记???p/q,则

?n???n??n?1.

因 lim?n?lim?n???n???bn?b?0, q

?n?1??n???n??n??(?n?1???n?1) ??n???n?1??2?n?1

2 ??????n???n?1???n?2??n?1?1??n?1

?n??n??n?1??(n?1)??????1??1??1 ?, ?n?第11页 共18页

XXXX数学与计算科学学院2011届毕业论文

于是 ?n?1??n??n??n?1??(n?1)??????1??1??1??n

由施笃兹定理有

n????(n?1)?nlim?n??n??n?1??(n?1)??????1??1??1??n?1????(n?1)?n

?limn??????lim?n?1?0

n???1??所以lim?n?1?0,lim?n?0,从而

n???n???n???liman?bb ?liman?n???p?qp?qn???我们不仅证明了{an}的极限存在,而且计算了liman.

3.4 施笃兹定理在研究数列渐近性方面的应用

结论3.4.1 设a?0,p?1,取x0为正数使得0?ax0p?1?1,令xn?1?xn?axnp,则

?p?1xn?(p?1)a,换个写法就是 有limn??n limnxnn??p?1?1 (4)

a(p?1)证明:首先,易知limxn?0.再由施笃兹定理和洛必达法则,有

n???p?1?p?1?p?1xnxn?xn lim ?lim?1n??n??n(n?1)?n ?limxn???p?1n[(1?axp?1?p?1n)(1?axnp?1)?p?1?1 ?1]?limn??xnp?1令x?xnp?1,当n??时,x?0,于是

?p?1xn(1?ax)?p?1?1lim?lim?(p?1)a, n??n?0nx从而(4)式成立.证毕.

注:若把条件0?ax0p?1?1换为limxn?0,结论仍然成立.

n??第12页 共18页