Êý¾Ý½á¹¹Ï°Ìâ¼°½â´ð
µÚ1Õ ¸ÅÊö
¡¾Àý1-1¡¿·ÖÎöÒÔϳÌÐò¶ÎµÄʱ¼ä¸´ÔÓ¶È¡£
for(i=0;i ½â£º¸Ã³ÌÐò¶ÎµÄʱ¼ä¸´ÔÓ¶ÈΪO(m*n)¡£ ¡¾Àý1-2¡¿·ÖÎöÒÔϳÌÐò¶ÎµÄʱ¼ä¸´ÔÓ¶È¡£ i=s=0; ¢Ù while(s ½â£ºÓï¾ä¢ÙΪ¸³ÖµÓï¾ä£¬ÆäÖ´ÐдÎÊýΪ1´Î£¬ËùÒÔÆäʱ¼ä¸´ÔÓ¶ÈΪO(1)¡£Óï¾ä¢ÚºÍÓï¾ä¢Û¹¹³ÉwhileÑ»·Óï¾äµÄÑ»·Ì壬ËüÃǵÄÖ´ÐдÎÊýÓÉÑ»·¿ØÖÆÌõ¼þÖÐsÓënµÄֵȷ¶¨¡£¼Ù¶¨Ñ»·Öظ´Ö´ÐÐx´Îºó½áÊø£¬ ÔòÓï¾ä¢ÚºÍÓï¾ä¢Û¸÷ÖØ¸´Ö´ÐÐÁËx´Î¡£Æäʱ¼ä¸´ÔӶȰ´ÏßÐÔÀÛ¼Ó¹æÔòΪO(x)¡£´ËʱsÓënÂú×ã¹ØÏµÊ½£ºs¡Ýn£¬¶øs=1+2+3+?+x¡£ËùÒÔÓУº1+2+3+?+x¡Ýn£¬¿ÉÒÔÍÆ³ö£º ?1?1?8n11????2n224x= xÓënÖ®¼äÂú×ãx=f(n£©£¬ËùÒÔÑ»·ÌåµÄʱ¼ä¸´ÔÓ¶ÈΪO(n)£¬Óï¾ä¢ÙÓëÑ»·ÌåÓÉÏßÐÔÀÛ¼Ó¹æÔòµÃµ½¸Ã³ÌÐò¶ÎµÄʱ¼ä¸´ÔÓ¶ÈΪO(n£©¡£ ¡¾Àý1-3¡¿·ÖÎöÒÔϳÌÐò¶ÎµÄʱ¼ä¸´ÔÓ¶È¡£ i=1; ¢Ù while(i<=n) i=2*i; ¢Ú ½â£ºÆäÖÐÓï¾ä¢ÙµÄÖ´ÐдÎÊýÊÇ1£¬ÉèÓï¾ä¢ÚµÄÖ´ÐдÎÊýΪf(n)£¬ÔòÓУº2f(n)?n¡£ µÃ£ºT£¨n£©=O(log2n) ¡¾Àý1-4¡¿ÓÐÈçϵݹ麯Êýfact(n)£¬·ÖÎöÆäʱ¼ä¸´ÔÓ¶È¡£ fact(int n) { if(n<=1) return(1); ¢Ù else return(n*fact(n-1)); ¢Ú } ½â£ºÉèfact£¨n£©µÄÔËÐÐʱ¼äº¯ÊýÊÇT(n)¡£¸Ãº¯ÊýÖÐÓï¾ä¢ÙµÄÔËÐÐʱ¼äÊÇO(1)£¬Óï¾ä¢ÚµÄÔËÐÐʱ¼äÊÇT(n-1)+ O(1)£¬ÆäÖÐO(1)Ϊ³£Á¿ÔËÐÐʱ¼ä¡£ Óɴ˿ɵÃfact£¨n£©µÄʱ¼ä¸´ÔÓ¶ÈΪ O(n)¡£ ϰÌâ1 Ò»¡¢µ¥ÏîÑ¡ÔñÌâ 1. Êý¾Ý½á¹¹ÊÇÖ¸£¨1. A £©¡£ A.Êý¾ÝÔªËØµÄ×éÖ¯ÐÎʽ B.Êý¾ÝÀàÐÍ C.Êý¾Ý´æ´¢½á¹¹ D.Êý¾Ý¶¨Òå 2. Êý¾ÝÔÚ¼ÆËã»ú´æ´¢Æ÷ÄÚ±íʾʱ£¬ÎïÀíµØÖ·ÓëÂß¼µØÖ·²»ÏàͬµÄ£¬³ÆÖ®Îª£¨2. C £©¡£ A.´æ´¢½á¹¹ B.Âß¼½á¹¹ C.Á´Ê½´æ´¢½á¹¹ D.˳Ðò´æ´¢½á¹¹ 3. Ê÷ÐνṹÊÇÊý¾ÝÔªËØÖ®¼ä´æÔÚÒ»ÖÖ£¨3. D £©¡£ A.Ò»¶ÔÒ»¹ØÏµ B.¶à¶Ô¶à¹ØÏµ C.¶à¶ÔÒ»¹ØÏµ D.Ò»¶Ô¶à¹ØÏµ 4. ÉèÓï¾äx++µÄʱ¼äÊǵ¥Î»Ê±¼ä£¬ÔòÒÔÏÂÓï¾äµÄʱ¼ä¸´ÔÓ¶ÈΪ£¨4. B£©¡£ for(i=1; i<=n; i++) for(j=i; j<=n; j++) x++; A.O(1) B.O(n) 2 C.O(n) D.O(n) 35. Ëã·¨·ÖÎöµÄÄ¿µÄÊÇ£¨5. C¡¢£©£¬Ëã·¨·ÖÎöµÄÁ½¸öÖ÷Òª·½ÃæÊÇ£¨A£©¡£ £¨1£© A.ÕÒ³öÊý¾Ý½á¹¹µÄºÏÀíÐÔ B.Ñо¿Ëã·¨ÖеÄÊäÈëºÍÊä³ö¹ØÏµ C.·ÖÎöËã·¨µÄЧÂÊÒÔÇó¸Ä½ø D.·ÖÎöËã·¨µÄÒ×¶®ÐÔºÍÎĵµÐÔ £¨2£© A.¿Õ¼ä¸´ÔӶȺÍʱ¼ä¸´ÔÓ¶È B.ÕýÈ·ÐԺͼòÃ÷ÐÔ C.¿É¶ÁÐÔºÍÎĵµÐÔ D.Êý¾Ý¸´ÔÓÐԺͳÌÐò¸´ÔÓÐÔ 6. ¼ÆËã»úËã·¨Ö¸µÄÊÇ£¨ 6. C¡¢£©£¬Ëü¾ß±¸ÊäÈ룬Êä³öºÍ£¨ B£©µÈÎå¸öÌØÐÔ¡£ £¨1£© A.¼ÆËã·½·¨ B.ÅÅÐò·½·¨ C.½â¾öÎÊÌâµÄÓÐÏÞÔËËãÐòÁÐ D.µ÷¶È·½·¨ £¨2£© A.¿ÉÐÐÐÔ£¬¿ÉÒÆÖ²ÐԺͿÉÀ©³äÐÔ B.¿ÉÐÐÐÔ£¬È·¶¨ÐÔºÍÓÐÇîÐÔ C.È·¶¨ÐÔ£¬ÓÐÇîÐÔºÍÎȶ¨ÐÔ D.Ò×¶ÁÐÔ£¬Îȶ¨ÐԺͰ²È«ÐÔ 7. Êý¾ÝÔÚ¼ÆËã»úÄÚÓÐÁ´Ê½ºÍ˳ÐòÁ½ÖÖ´æ´¢·½Ê½£¬ÔÚ´æ´¢¿Õ¼äʹÓõÄÁé»îÐÔÉÏ£¬Á´Ê½´æ´¢±È˳Ðò´æ´¢Òª£¨ 7. B£©¡£ A.µÍ B.¸ß C.Ïàͬ D.²»ºÃ˵ 8. Êý¾Ý½á¹¹×÷ΪһÃŶÀÁ¢µÄ¿Î³Ì³öÏÖÊÇÔÚ£¨ 8. D£©Äê¡£ A.1946 B.1953 C.1964 D.1968 9. Êý¾Ý½á¹¹Ö»ÊÇÑо¿Êý¾ÝµÄÂß¼½á¹¹ºÍÎïÀí½á¹¹£¬ÕâÖֹ۵㣨9. B £©¡£ A.ÕýÈ· B.´íÎó C.ǰ°ë¾ä¶Ô£¬ºó°ë¾ä´í D.ǰ°ë¾ä´í£¬ºó°ë¾ä¶Ô 10. ¼ÆËã»úÄÚ²¿Êý¾Ý´¦ÀíµÄ»ù±¾µ¥Î»ÊÇ£¨10. B £©¡£ A.Êý¾Ý B.Êý¾ÝÔªËØ C.Êý¾ÝÏî D.Êý¾Ý¿â ¶þ¡¢Ìî¿ÕÌâ 1. Êý¾Ý½á¹¹°´Âß¼½á¹¹¿É·ÖΪÁ½´óÀ࣬·Ö±ðÊÇ______________ºÍ_________________¡£1. ÏßÐԽṹ£¬·ÇÏßÐԽṹ 2. Êý¾ÝµÄÂß¼½á¹¹ÓÐËÄÖÖ»ù±¾ÐÎ̬£¬·Ö±ðÊÇ________________¡¢__________________¡¢__________________ºÍ__________________¡£2. ¼¯ºÏ£¬ÏßÐÔ£¬Ê÷£¬Í¼ 3. ÏßÐԽṹ·´Ó³½áµã¼äµÄÂß¼¹ØÏµÊÇ__________________µÄ£¬·ÇÏßÐԽṹ·´Ó³½áµã¼äµÄÂß¼¹ØÏµÊÇ__________________µÄ¡£3. Ò»¶ÔÒ»£¬Ò»¶Ô¶à»ò¶à¶Ô¶à 4. Ò»¸öËã·¨µÄЧÂʿɷÖΪ__________________ЧÂʺÍ__________________ЧÂÊ¡£4. ʱ¼ä£¬¿Õ¼ä 5. ÔÚÊ÷ÐͽṹÖУ¬Ê÷¸ù½áµãûÓÐ__________________½áµã£¬ÆäÓàÿ¸ö½áµãµÄÓÐÇÒÖ»ÓÐ__________________¸öǰÇ÷Çý½áµã£»Ò¶×Ó½áµãûÓÐ__________________½áµã£»ÆäÓàÿ¸ö½áµãµÄºóÐø½áµã¿ÉÒÔ__________________¡£5. ǰÇ÷£¬Ò»£¬ºó¼Ì£¬¶à 6. ÔÚͼÐͽṹÖУ¬Ã¿¸ö½áµãµÄǰÇ÷½áµãÊýºÍºóÐø½áµãÊý¿ÉÒÔ__________________¡£6. Óжà¸ö 7. ÏßÐԽṹÖÐÔªËØÖ®¼ä´æÔÚ__________________¹ØÏµ£»Ê÷ÐͽṹÖÐÔªËØÖ®¼ä´æÔÚ__________________¹ØÏµ£»Í¼ÐͽṹÖÐÔªËØÖ®¼ä´æÔÚ__________________¹ØÏµ¡£7. Ò»¶ÔÒ»£¬Ò»¶Ô¶à£¬¶à¶Ô¶à 8. ÏÂÃæ³ÌÐò¶ÎµÄʱ¼ä¸´ÔÓ¶ÈÊÇ__________________¡£8. O(n) for(i=0;i A[i][j]=0; 29. ÏÂÃæ³ÌÐò¶ÎµÄʱ¼ä¸´ÔÓ¶ÈÊÇ__________________¡£9. O(n) i=s=0; while(s 10. ÏÂÃæ³ÌÐò¶ÎµÄʱ¼ä¸´ÔÓ¶ÈÊÇ__________________¡£10. O(n) 2s=0; for(i=0;i 11. ÏÂÃæ³ÌÐò¶ÎµÄʱ¼ä¸´ÔÓ¶ÈÊÇ__________________¡£11. O(log3n) i=1; while(i<=n) i=i*3; 12. ºâÁ¿Ëã·¨ÕýÈ·ÐԵıê׼ͨ³£ÊÇ__________________________¡£12. ³ÌÐò¶ÔÓÚ¾«ÐÄÉè¼ÆµÄµäÐͺϷ¨Êý¾ÝÊäÈëÄܵóö·ûºÏÒªÇóµÄ½á¹û¡£ 13. Ë㷨ʱ¼ä¸´ÔӶȵķÖÎöͨ³£ÓÐÁ½ÖÖ·½·¨£¬¼´___________ºÍ___________µÄ·½·¨£¬Í¨³£ÎÒÃǶÔËã·¨Çóʱ¼ä¸´ÔÓ¶Èʱ£¬²ÉÓúóÒ»ÖÖ·½·¨¡£13. ʺóͳ¼Æ£¬ÊÂǰ¹À¼Æ Èý¡¢ÇóÏÂÁгÌÐò¶ÎµÄʱ¼ä¸´ÔÓ¶È¡£ 1. x=0; for(i=1;i x++; 1. O(n) 22. x=0; for(i=1;i 23. int i,j,k; for(i=0;i for(k=0;k c[i][j]=a[i][k]*b[k][j] } 3. O(n) 34. i=n-1; while((i>=0)&&A[i]!=k)) j--; return (i); 4. O(n)