Êý¾Ý½á¹¹¸÷ÕÂϰÌâ¼°´ð°¸£¡£¡ ÏÂÔØ±¾ÎÄ

Êý¾Ý½á¹¹Ï°Ìâ¼°½â´ð

µÚ1Õ ¸ÅÊö

¡¾Àý1-1¡¿·ÖÎöÒÔϳÌÐò¶ÎµÄʱ¼ä¸´ÔÓ¶È¡£

for(i=0;i

½â£º¸Ã³ÌÐò¶ÎµÄʱ¼ä¸´ÔÓ¶ÈΪO(m*n)¡£ ¡¾Àý1-2¡¿·ÖÎöÒÔϳÌÐò¶ÎµÄʱ¼ä¸´ÔÓ¶È¡£

i=s=0; ¢Ù while(s

½â£ºÓï¾ä¢ÙΪ¸³ÖµÓï¾ä£¬ÆäÖ´ÐдÎÊýΪ1´Î£¬ËùÒÔÆäʱ¼ä¸´ÔÓ¶ÈΪO(1)¡£Óï¾ä¢ÚºÍÓï¾ä¢Û¹¹³ÉwhileÑ­»·Óï¾äµÄÑ­»·Ì壬ËüÃǵÄÖ´ÐдÎÊýÓÉÑ­»·¿ØÖÆÌõ¼þÖÐsÓënµÄֵȷ¶¨¡£¼Ù¶¨Ñ­»·Öظ´Ö´ÐÐx´Îºó½áÊø£¬ ÔòÓï¾ä¢ÚºÍÓï¾ä¢Û¸÷ÖØ¸´Ö´ÐÐÁËx´Î¡£Æäʱ¼ä¸´ÔӶȰ´ÏßÐÔÀÛ¼Ó¹æÔòΪO(x)¡£´ËʱsÓënÂú×ã¹ØÏµÊ½£ºs¡Ýn£¬¶øs=1+2+3+?+x¡£ËùÒÔÓУº1+2+3+?+x¡Ýn£¬¿ÉÒÔÍÆ³ö£º

?1?1?8n11????2n224x=

xÓënÖ®¼äÂú×ãx=f(n£©£¬ËùÒÔÑ­»·ÌåµÄʱ¼ä¸´ÔÓ¶ÈΪO(n)£¬Óï¾ä¢ÙÓëÑ­»·ÌåÓÉÏßÐÔÀÛ¼Ó¹æÔòµÃµ½¸Ã³ÌÐò¶ÎµÄʱ¼ä¸´ÔÓ¶ÈΪO(n£©¡£ ¡¾Àý1-3¡¿·ÖÎöÒÔϳÌÐò¶ÎµÄʱ¼ä¸´ÔÓ¶È¡£

i=1; ¢Ù while(i<=n) i=2*i; ¢Ú

½â£ºÆäÖÐÓï¾ä¢ÙµÄÖ´ÐдÎÊýÊÇ1£¬ÉèÓï¾ä¢ÚµÄÖ´ÐдÎÊýΪf(n)£¬ÔòÓУº2f(n)?n¡£

µÃ£ºT£¨n£©=O(log2n)

¡¾Àý1-4¡¿ÓÐÈçϵݹ麯Êýfact(n)£¬·ÖÎöÆäʱ¼ä¸´ÔÓ¶È¡£

fact(int n) { if(n<=1)

return(1); ¢Ù else

return(n*fact(n-1)); ¢Ú }

½â£ºÉèfact£¨n£©µÄÔËÐÐʱ¼äº¯ÊýÊÇT(n)¡£¸Ãº¯ÊýÖÐÓï¾ä¢ÙµÄÔËÐÐʱ¼äÊÇO(1)£¬Óï¾ä¢ÚµÄÔËÐÐʱ¼äÊÇT(n-1)+ O(1)£¬ÆäÖÐO(1)Ϊ³£Á¿ÔËÐÐʱ¼ä¡£

Óɴ˿ɵÃfact£¨n£©µÄʱ¼ä¸´ÔÓ¶ÈΪ O(n)¡£

ϰÌâ1

Ò»¡¢µ¥ÏîÑ¡ÔñÌâ

1. Êý¾Ý½á¹¹ÊÇÖ¸£¨1. A £©¡£

A.Êý¾ÝÔªËØµÄ×éÖ¯ÐÎʽ B.Êý¾ÝÀàÐÍ C.Êý¾Ý´æ´¢½á¹¹ D.Êý¾Ý¶¨Òå

2. Êý¾ÝÔÚ¼ÆËã»ú´æ´¢Æ÷ÄÚ±íʾʱ£¬ÎïÀíµØÖ·ÓëÂß¼­µØÖ·²»ÏàͬµÄ£¬³ÆÖ®Îª£¨2. C £©¡£

A.´æ´¢½á¹¹ B.Âß¼­½á¹¹ C.Á´Ê½´æ´¢½á¹¹ D.˳Ðò´æ´¢½á¹¹ 3. Ê÷ÐνṹÊÇÊý¾ÝÔªËØÖ®¼ä´æÔÚÒ»ÖÖ£¨3. D £©¡£

A.Ò»¶ÔÒ»¹ØÏµ B.¶à¶Ô¶à¹ØÏµ C.¶à¶ÔÒ»¹ØÏµ D.Ò»¶Ô¶à¹ØÏµ

4. ÉèÓï¾äx++µÄʱ¼äÊǵ¥Î»Ê±¼ä£¬ÔòÒÔÏÂÓï¾äµÄʱ¼ä¸´ÔÓ¶ÈΪ£¨4. B£©¡£

for(i=1; i<=n; i++) for(j=i; j<=n; j++) x++;

A.O(1)

B.O(n)

2 C.O(n)

D.O(n)

35. Ëã·¨·ÖÎöµÄÄ¿µÄÊÇ£¨5. C¡¢£©£¬Ëã·¨·ÖÎöµÄÁ½¸öÖ÷Òª·½ÃæÊÇ£¨A£©¡£

£¨1£© A.ÕÒ³öÊý¾Ý½á¹¹µÄºÏÀíÐÔ B.Ñо¿Ëã·¨ÖеÄÊäÈëºÍÊä³ö¹ØÏµ

C.·ÖÎöËã·¨µÄЧÂÊÒÔÇó¸Ä½ø D.·ÖÎöËã·¨µÄÒ×¶®ÐÔºÍÎĵµÐÔ £¨2£© A.¿Õ¼ä¸´ÔӶȺÍʱ¼ä¸´ÔÓ¶È B.ÕýÈ·ÐԺͼòÃ÷ÐÔ

C.¿É¶ÁÐÔºÍÎĵµÐÔ D.Êý¾Ý¸´ÔÓÐԺͳÌÐò¸´ÔÓÐÔ 6. ¼ÆËã»úËã·¨Ö¸µÄÊÇ£¨ 6. C¡¢£©£¬Ëü¾ß±¸ÊäÈ룬Êä³öºÍ£¨ B£©µÈÎå¸öÌØÐÔ¡£ £¨1£© A.¼ÆËã·½·¨ B.ÅÅÐò·½·¨

C.½â¾öÎÊÌâµÄÓÐÏÞÔËËãÐòÁÐ D.µ÷¶È·½·¨

£¨2£© A.¿ÉÐÐÐÔ£¬¿ÉÒÆÖ²ÐԺͿÉÀ©³äÐÔ B.¿ÉÐÐÐÔ£¬È·¶¨ÐÔºÍÓÐÇîÐÔ

C.È·¶¨ÐÔ£¬ÓÐÇîÐÔºÍÎȶ¨ÐÔ D.Ò×¶ÁÐÔ£¬Îȶ¨ÐԺͰ²È«ÐÔ

7. Êý¾ÝÔÚ¼ÆËã»úÄÚÓÐÁ´Ê½ºÍ˳ÐòÁ½ÖÖ´æ´¢·½Ê½£¬ÔÚ´æ´¢¿Õ¼äʹÓõÄÁé»îÐÔÉÏ£¬Á´Ê½´æ´¢±È˳Ðò´æ´¢Òª£¨ 7. B£©¡£

A.µÍ B.¸ß C.Ïàͬ D.²»ºÃ˵ 8. Êý¾Ý½á¹¹×÷ΪһÃŶÀÁ¢µÄ¿Î³Ì³öÏÖÊÇÔÚ£¨ 8. D£©Äê¡£

A.1946 B.1953 C.1964 D.1968 9. Êý¾Ý½á¹¹Ö»ÊÇÑо¿Êý¾ÝµÄÂß¼­½á¹¹ºÍÎïÀí½á¹¹£¬ÕâÖֹ۵㣨9. B £©¡£

A.ÕýÈ· B.´íÎó

C.ǰ°ë¾ä¶Ô£¬ºó°ë¾ä´í D.ǰ°ë¾ä´í£¬ºó°ë¾ä¶Ô 10. ¼ÆËã»úÄÚ²¿Êý¾Ý´¦ÀíµÄ»ù±¾µ¥Î»ÊÇ£¨10. B £©¡£

A.Êý¾Ý B.Êý¾ÝÔªËØ C.Êý¾ÝÏî D.Êý¾Ý¿â ¶þ¡¢Ìî¿ÕÌâ

1. Êý¾Ý½á¹¹°´Âß¼­½á¹¹¿É·ÖΪÁ½´óÀ࣬·Ö±ðÊÇ______________ºÍ_________________¡£1. ÏßÐԽṹ£¬·ÇÏßÐԽṹ

2. Êý¾ÝµÄÂß¼­½á¹¹ÓÐËÄÖÖ»ù±¾ÐÎ̬£¬·Ö±ðÊÇ________________¡¢__________________¡¢__________________ºÍ__________________¡£2. ¼¯ºÏ£¬ÏßÐÔ£¬Ê÷£¬Í¼

3. ÏßÐԽṹ·´Ó³½áµã¼äµÄÂß¼­¹ØÏµÊÇ__________________µÄ£¬·ÇÏßÐԽṹ·´Ó³½áµã¼äµÄÂß¼­¹ØÏµÊÇ__________________µÄ¡£3. Ò»¶ÔÒ»£¬Ò»¶Ô¶à»ò¶à¶Ô¶à

4. Ò»¸öËã·¨µÄЧÂʿɷÖΪ__________________ЧÂʺÍ__________________ЧÂÊ¡£4. ʱ¼ä£¬¿Õ¼ä

5. ÔÚÊ÷ÐͽṹÖУ¬Ê÷¸ù½áµãûÓÐ__________________½áµã£¬ÆäÓàÿ¸ö½áµãµÄÓÐÇÒÖ»ÓÐ__________________¸öǰÇ÷Çý½áµã£»Ò¶×Ó½áµãûÓÐ__________________½áµã£»ÆäÓàÿ¸ö½áµãµÄºóÐø½áµã¿ÉÒÔ__________________¡£5. ǰÇ÷£¬Ò»£¬ºó¼Ì£¬¶à

6. ÔÚͼÐͽṹÖУ¬Ã¿¸ö½áµãµÄǰÇ÷½áµãÊýºÍºóÐø½áµãÊý¿ÉÒÔ__________________¡£6. Óжà¸ö

7. ÏßÐԽṹÖÐÔªËØÖ®¼ä´æÔÚ__________________¹ØÏµ£»Ê÷ÐͽṹÖÐÔªËØÖ®¼ä´æÔÚ__________________¹ØÏµ£»Í¼ÐͽṹÖÐÔªËØÖ®¼ä´æÔÚ__________________¹ØÏµ¡£7. Ò»¶ÔÒ»£¬Ò»¶Ô¶à£¬¶à¶Ô¶à

8. ÏÂÃæ³ÌÐò¶ÎµÄʱ¼ä¸´ÔÓ¶ÈÊÇ__________________¡£8. O(n)

for(i=0;i

A[i][j]=0;

29. ÏÂÃæ³ÌÐò¶ÎµÄʱ¼ä¸´ÔÓ¶ÈÊÇ__________________¡£9. O(n)

i=s=0; while(s

10. ÏÂÃæ³ÌÐò¶ÎµÄʱ¼ä¸´ÔÓ¶ÈÊÇ__________________¡£10. O(n)

2s=0;

for(i=0;i

11. ÏÂÃæ³ÌÐò¶ÎµÄʱ¼ä¸´ÔÓ¶ÈÊÇ__________________¡£11. O(log3n)

i=1; while(i<=n) i=i*3;

12. ºâÁ¿Ëã·¨ÕýÈ·ÐԵıê׼ͨ³£ÊÇ__________________________¡£12. ³ÌÐò¶ÔÓÚ¾«ÐÄÉè¼ÆµÄµäÐͺϷ¨Êý¾ÝÊäÈëÄܵóö·ûºÏÒªÇóµÄ½á¹û¡£

13. Ë㷨ʱ¼ä¸´ÔӶȵķÖÎöͨ³£ÓÐÁ½ÖÖ·½·¨£¬¼´___________ºÍ___________µÄ·½·¨£¬Í¨³£ÎÒÃǶÔËã·¨Çóʱ¼ä¸´ÔÓ¶Èʱ£¬²ÉÓúóÒ»ÖÖ·½·¨¡£13. ʺóͳ¼Æ£¬ÊÂǰ¹À¼Æ

Èý¡¢ÇóÏÂÁгÌÐò¶ÎµÄʱ¼ä¸´ÔÓ¶È¡£

1. x=0;

for(i=1;i

x++; 1. O(n)

22. x=0;

for(i=1;i

23. int i,j,k;

for(i=0;i

for(k=0;k

c[i][j]=a[i][k]*b[k][j]

}

3. O(n)

34. i=n-1;

while((i>=0)&&A[i]!=k)) j--; return (i); 4. O(n)