人体的耐冲击性与伤害标准 下载本文

人体的耐冲击性与伤害标准

人体全身的耐冲击性研究 头部的耐冲击性和伤害标准 颈部的耐

冲击性 胸部的耐冲击性

车辆设计保护人体相关视频

交通事故中,大部分人伤害都是因人体受到外力冲击所致。人体对外力的冲击有一定的承受能力,但当外力超过一定限度时,人体便会受到伤害。在设计汽车安全构造时,应该了解人体耐冲击性,使得车辆总体结构、乘员保护装臵及车内构造物的设计安全合理,以保证人体受到的冲击力不会超过人体承受限度。

表示人体耐冲击性的物理量,一般采用加(减)速度、负荷、压力及位移(变形量)。特别是加速度,能准确地表示冲击大小的尺度,测量和数据处理也比较容易,负荷和位移往往用于表达骨折和挫伤的耐冲击性。由于人体各部位的构造、机能不同,耐冲击性也各不相同,这里主要说明实际撞车时多发性重度伤害的头部、胸部、颈部的伤害标准。

一、人体全身的耐冲击性研究

人体耐冲击性的研究,最初是由航天技术的需要发展起来的。根据当时的研究,人体全身的耐冲击能力有无伤、中伤、重伤三个区域,无

伤和中伤的界限可视为人体耐冲击界限,这一界限值随减速度作用时间的延长而降低。交通事故伤害是人体某个部位受到冲击,而不是全身受到均匀一致的冲击。因此,全身耐冲击能力对交通安全的实际意义不大,但这一成果对以后交通安全研究的发展却有很大的影响。

TOP

二、头部的耐冲击性和伤害标准

在交通事故中,头部伤害是最重要的伤害形式。直线减速度作用下头部伤害界限按下式计算:

其中,GE为有效减速度,G(t)为减速度随时间变化的函数,T为减速度作用时间。显然,随着减速度作用时间的延长,安全界限降低,也就是伤害危险性增大。上述公式所示曲线是美国缅因州立大学于1960年提出的,所以又称WSTC曲线。

在WSTC曲线的基础上以几经修改,1971年美国运输部决定采用下述HIC计算公式作为头部伤害界限的基准:

式中:a——头部重心加速度,用重力加速度g的倍数表示; t2,t1——碰撞过程中所选择的两个时刻,它们应使上式计算结果达到最小值(秒)。

HIC=1000作为头部冲击伤害的安全界限,美国现行法定标准规定:时速为30英里(约合48km/h)的正面碰撞,其HIC值为1000。

这一安全界限已被美国联邦机动车安全标准(FMVSS)采用作为评价汽车安全措施的依据。据测定用IC值为1000时,发生恶性头骨骨折的概率相当于33%。我国的国家标准GBT11551-89《汽车乘员碰撞保护》也将此值作为防止乘员受伤的标准要求。

TOP

三、颈部的耐冲击性

人体颈部的生理构造很复杂,即使受到轻微冲击,也可能造成伤害而产生严重后果。颈部的耐冲击性至今尚未完全明了。颈部向前及向后倾斜时的伤害界限约为60度左右,这一研究成果可用来指导汽车座椅靠背及安全枕的设计。

TOP

四、胸部的耐冲击性

在交通事故中,驾驶员常因胸部与方向盘碰撞而受伤。为减轻事故中驾驶员的伤害,可将汽车的转向管柱作成安全转向管柱,这种转向柱受到大于某一界限值的压力时,长度会缩短,从而起到保护作用。为了确定界限压力的数值,就需要了解人体胸部的耐冲击特性。美国20世纪70年代初期的研究结果表明,胸部受到的冲击力如超过6.4KN,人体便会受到严重伤害,发生胸骨、肋骨骨折和心肺损伤。因此,可以此值作为胸部的耐冲击界限。

另外,对于人体其它部位,如腹部、腿部及足部、臀部等,欧美国家都有相应的伤害界限标准。

TOP

乘员约束装置的保护原理

安全是乘车人最关心的问题。一方面,生产厂家制造的汽车本身必须是安全、可靠的,即所谓主动安全,这主要从制动、操纵稳定性等汽车自身的性能上采取措施;另一方面,万一发生撞车、翻车事故时,也要能对乘员加以足够的保护,减轻二次碰撞,使伤害降低到最低限度,即所谓被动安全。这主要从车身结构(吸收撞击能量)、内饰软化、乘员保护等方面采取措施。

1、二次碰撞

加速度(或减速度)是造成人体伤害的主要原因。当车辆发生碰撞时,车速会发生急剧变化,这称为第一次碰撞。由于车速发生急剧改变,车内乘员在惯性力作用下,将与车内结构物发生剧烈碰撞,并因此而受伤,这称为第二次碰撞。汽车在第一次碰撞中的加(减)速度越大,车内乘员第二次碰撞的加(减)速度也越大,乘员的伤害也越严重。如以60km/h车速进行碰撞试验,一个体重75kg的人可产生3吨的冲力。