2018中考数学试题分类汇编考点10一元二次方程 下载本文

(2)a=1,b=﹣2,c=﹣1, △=b﹣4ac=4+4=8>0, 方程有两个不相等的实数根, x=则x1=1+

34.(2018?齐齐哈尔)解方程:2(x﹣3)=3x(x﹣3).

【分析】移项后提取公因式x﹣3后利用因式分解法求得一元二次方程的解即可. 【解答】解:2(x﹣3)=3x(x﹣3), 移项得:2(x﹣3)﹣3x(x﹣3)=0, 整理得:(x﹣3)(2﹣3x)=0, x﹣3=0或2﹣3x=0, 解得:x1=3或x2=.

35.(2018?遵义)在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系. 销售量y(千克) 售价x(元/千克)

… …

34.8 22.6

32 24

29.6 25.2

28 26

… …

=

,x2=1﹣

=1

2

(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量. (2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?

【分析】(1)根据表格内的数据,利用待定系数法可求出y与x之间的函数关系式,再代入x=23.5即可求出结论;

(2)根据总利润=每千克利润×销售数量,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.

【解答】解:(1)设y与x之间的函数关系式为y=kx+b, 将(22.6,34.8)、(24,32)代入y=kx+b,

,解得:

∴y与x之间的函数关系式为y=﹣2x+80. 当x=23.5时,y=﹣2x+80=33. 答:当天该水果的销售量为33千克.

(2)根据题意得:(x﹣20)(﹣2x+80)=150, 解得:x1=35,x2=25. ∵20≤x≤32, ∴x=25.

答:如果某天销售这种水果获利150元,那么该天水果的售价为25元.

36.(2018?德州)为积极响应新旧动能转换,提高公司经济效益,某科技公司近期研发出一种新型高科技设备,每台设备成本价为30万元,经过市场调研发现,每台售价为40万元时,年销售量为600台;每台售价为45万元时,年销售量为550台.假定该设备的年销售量y(单位:台)和销售单价x(单位:万元)成一次函数关系. (1)求年销售量y与销售单价x的函数关系式;

(2)根据相关规定,此设备的销售单价不得高于70万元,如果该公司想获得10000万元的年利润,则该设备的销售单价应是多少万元?

【分析】(1)根据点的坐标,利用待定系数法即可求出年销售量y与销售单价x的函数关系式;

(2)设此设备的销售单价为x万元/台,则每台设备的利润为(x﹣30)万元,销售数量为(﹣10x+1000)台,根据总利润=单台利润×销售数量,即可得出关于x的一元二次方程,解之取其小于70的值即可得出结论.

【解答】解:(1)设年销售量y与销售单价x的函数关系式为y=kx+b(k≠0), 将(40,600)、(45,550)代入y=kx+b,得:

,解得:

∴年销售量y与销售单价x的函数关系式为y=﹣10x+1000.

(2)设此设备的销售单价为x万元/台,则每台设备的利润为(x﹣30)万元,销售数量为(﹣10x+1000)台,

根据题意得:(x﹣30)(﹣10x+1000)=10000, 整理,得:x2﹣130x+4000=0,

解得:x1=50,x2=80.

∵此设备的销售单价不得高于70万元, ∴x=50.

答:该设备的销售单价应是50万元/台.

37.(2018?沈阳)某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.

假设该公司2、3、4月每个月生产成本的下降率都相同. (1)求每个月生产成本的下降率; (2)请你预测4月份该公司的生产成本.

【分析】(1)设每个月生产成本的下降率为x,根据2月份、3月份的生产成本,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;

(2)由4月份该公司的生产成本=3月份该公司的生产成本×(1﹣下降率),即可得出结论.

【解答】解:(1)设每个月生产成本的下降率为x, 根据题意得:400(1﹣x)=361,

解得:x1=0.05=5%,x2=1.95(不合题意,舍去). 答:每个月生产成本的下降率为5%. (2)361×(1﹣5%)=342.95(万元).

答:预测4月份该公司的生产成本为342.95万元.

38.(2018?重庆)在美丽乡村建设中,某县政府投入专项资金,用于乡村沼气池和垃圾集中处理点建设.该县政府计划:2018年前5个月,新建沼气池和垃圾集中处理点共计50个,且沼气池的个数不低于垃圾集中处理点个数的4倍. (1)按计划,2018年前5个月至少要修建多少个沼气池?

(2)到2018年5月底,该县按原计划刚好完成了任务,共花费资金78万元,且修建的沼气池个数恰好是原计划的最小值.据核算,前5个月,修建每个沼气池与垃圾集中处理点的平均费用之比为1:2.为加大美丽乡村建设的力度,政府计划加大投入,今年后7个月,在前5个月花费资金的基础上增加投入10a%,全部用于沼气池和垃圾集中处理点建设.经测算:从今年6月起,修建每个沼气池与垃圾集中处理点的平均费用在2018年前5个月的

2

基础上分别增加a%,5a%,新建沼气池与垃圾集中处理点的个数将会在2018年前5个月的基础上分别增加5a%,8a%,求a的值.

【分析】(1)设2018年前5个月要修建x个沼气池,则2018年前5个月要修建(50﹣x)个垃圾集中处理点,根据沼气池的个数不低于垃圾集中处理点个数的4倍,即可得出关于x的一元一次不等式,解之取其最小值即可得出结论;

(2)根据单价=总价÷数量可求出修建每个沼气池的平均费用,进而可求出修建每个垃圾集中点的平均费用,设y=a%结合总价=单价×数量即可得出关于y的一元二次方程,解之即可得出y值,进而可得出a的值.

【解答】解:(1)设2018年前5个月要修建x个沼气池,则2018年前5个月要修建(50﹣x)个垃圾集中处理点, 根据题意得:x≥4(50﹣x), 解得:x≥40.

答:按计划,2018年前5个月至少要修建40个沼气池.

(2)修建每个沼气池的平均费用为78÷[40+(50﹣40)×2]=1.3(万元), 修建每个垃圾处理点的平均费用为1.3×2=2.6(万元).

根据题意得:1.3×(1+a%)×40×(1+5a%)+2.6×(1+5a%)×10×(1+8a%)=78×(1+10a%), 设y=a%,整理得:50y2﹣5y=0,

解得:y1=0(不合题意,舍去),y2=0.1, ∴a的值为10.

39.(2018?盐城)一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件. (1)若降价3元,则平均每天销售数量为 26 件;

(2)当每件商品降价多少元时,该商店每天销售利润为1200元?

【分析】(1)根据销售单价每降低1元,平均每天可多售出2件,可得若降价3元,则平均每天可多售出2×3=6件,即平均每天销售数量为20+6=26件;

(2)利用商品平均每天售出的件数×每件盈利=每天销售这种商品利润列出方程解答即可. 【解答】解:(1)若降价3元,则平均每天销售数量为20+2×3=26件. 故答案为26;