´óѧ¸ÅÂÊÏ°Ìâ´óÈ«¼°´ð°¸ ÏÂÔر¾ÎÄ

¸ÅÂÊÂÛÓëÊýÀíͳ¼Æ±ê×¼×÷ÒµÖ½ °à¼¶ ѧºÅ ÐÕÃû

2.ÀÏʦÌá³öÒ»¸öÎÊÌ⣬¼×ÏȻش𣬴ð¶ÔµÄ¸ÅÂÊÊÇ0.4;Èç¹û¼×´ð´íÁË£¬¾ÍÓÉÒÒ´ð£¬ÒÒ´ð ¶ÔµÄ¸ÅÂÊÊÇ0.5;Èç¹û¼×´ð¶ÔÁË£¬¾Í²»±ØÒһشð£¬ÔòÕâ¸öÎÊÌâÓÉÒÒ´ð¶ÔµÄ¸ÅÂÊΪ 0.3 3.ÊÔ¾íÖÐÓÐÒ»µÀÑ¡ÔñÌ⣬¹²ÓÐ4¸ö´ð°¸¿É¹©Ñ¡Ôñ£¬ÆäÖÐÖ»ÓÐÒ»¸ö´ð°¸ÊÇÕýÈ·µÄ¡£ÈÎÒ»¿¼ÉúÈç¹û»á½âÕâµÀÌ⣬ÔòÒ»¶¨ÄÜÑ¡³öÕýÈ·´ð°¸£»Èç¹ûËû²»»á½âÕâµÀÌ⣬Ôò²»·ÁÈÎÑ¡Ò»¸ö´ð°¸¡£Èô¿¼Éú»á½âÕâµÀÌâµÄ¸ÅÂÊÊÇ0.8,Ôò¿¼ÉúÑ¡³öÕýÈ·´ð°¸µÄ¸ÅÂÊΪ 0.85

Èý¡¢¼ò´ðÌâ

1.²£Á§±­³ÉÏä³öÊÛ£¬Ã¿Ïä20Ö».¼ÙÉè¸÷Ï京0,1,2Ö»²Ð´ÎÆ·µÄ¸ÅÂÊ·Ö±ðΪ0.8, 0.1ºÍ0.1. Ò»¹Ë¿ÍÓû¹ºÒ»Ïä²£Á§±­,ÔÚ¹ºÂòʱ,ÊÛ»õÔ±ÈÎÈ¡Ò»Ïä,¶ø¹Ë¿ÍËæ»úµÄ²ì¿´4Ö»,ÈôÎ޲дÎÆ·,ÔòÂòϸÃÏä²£Á§±­,·ñÔòÍË»¹.ÊÔÇó¹Ë¿ÍÂòϸÃÏäµÄ¸ÅÂÊ¡£

½â:ÉèAi?¡°Ã¿ÏäÓÐiÖ»´ÎÆ·¡± £¨i?0,1,2,) , B?¡°ÂòϸÃÏ䡱 . P(B)?P(A0)P(B|A0)?P(A1)P(B|A1)?P(A2)P(B|A2)

44C19C18 ?0.8?1?0.1?4?0.1?4?0.94

C20C20 2.Ò»¹¤³§ÓÐÁ½¸ö³µ¼ä£¬Ä³ÌìÒ»³µ¼äÉú²ú²úÆ·100¼þ£¬ÆäÖÐ15¼þ´ÎÆ·£»¶þ³µ¼äÉú²ú²úÆ·50

¼þ£¬ÆäÖÐÓÐ10¼þ´ÎÆ·£¬°Ñ²úÆ·¶Ñ·ÅÒ»Æð£¨Á½³µ¼ä²úƷûÓÐÇø·Ö±êÖ¾£©£¬Ç󣺣¨1£©´Ó¸ÃÌìÉú²úµÄ²úÆ·ÖÐËæ»úÈ¡Ò»¼þ¼ì²é£¬ËüÊÇ´ÎÆ·µÄ¸ÅÂÊ£»£¨2£©ÈôÒѲé³ö¸Ã²úÆ·ÊÇ´ÎÆ·£¬ÔòËüÊǶþ³µ¼äÉú²úµÄ¸ÅÂÊ¡£

½â£º£¨1£©Éèʼþ¡°È¡µÄ²úÆ·À´×Ô1³µ¼ä¡±ÎªA1,ʼþ¡°È¡µÄ²úÆ·À´×Ô2³µ¼ä¡±ÎªA2£¬ ¡°´ÓÖÐÈÎÈ¡Ò»¸öÊÇ´ÎÆ·¡±ÎªB£¬

211P?B??P?B|A1?P?A1??P?B|A2?P?A2???0.15??0.2?

336£¨2£© P?A2|B??P?A2B?P?B|A2?P?A2?2??

P?B?P?B?53£®·¢±¨Ì¨·Ö±ðÒÔ¸ÅÂÊ0.6¼°¸ÅÂÊ0.4·¢³öÐźš°?¡±¼°¡°-¡±¡£ÓÉÓÚͨÐÅϵͳÊܵ½¸ÉÈÅ£¬µ±

·¢³öÐźš°?¡±Ê±£¬ÊÕ±¨Ì¨ÒÔ¸ÅÂÊ0.8¼°0.2ÊÕµ½Ðźš°?¡±¼°¡°-¡±£»ÓÖµ±·¢³öÐźš°-¡±Ê±£¬ÊÕ±¨Ì¨ÒÔ¸ÅÂÊ0.9¼°0.1ÊÕµ½Ðźš°-¡±¼°¡°?¡±¡£ Ç󣺣¨1£©µ±ÊÕ±¨Ì¨ÊÕµ½Ðźš°?¡±Ê±£¬·¢±¨Ì¨È·Ïµ·¢³öÐźš°?¡±µÄ¸ÅÂÊ£» £¨2£©µ±ÊÕ±¨Ì¨ÊÕµ½Ðźš°-¡±Ê±£¬·¢±¨Ì¨È·Ïµ·¢³öÐźš°-¡±µÄ¸ÅÂÊ¡£ ½â£ºÉèʼþA±íʾ·¢±¨Ì¨·¢³öÐźš°?¡±£¬ÔòʼþA±íʾ·¢±¨Ì¨·¢³öÐźš°-¡±£» ÉèʼþB±íʾÊÕ±¨Ì¨ÊÕµ½Ðźš°?¡±£¬ÔòʼþB±íʾÊÕ±¨Ì¨ÊÕµ½Ðźš°-¡±£» ¸ù¾ÝÌâÉèÌõ¼þ¿ÉÖª£ºP(A)?0.6,P(A)?0.4£»

µÚ 5 Ò³

¸ÅÂÊÂÛÓëÊýÀíͳ¼Æ±ê×¼×÷ÒµÖ½ °à¼¶ ѧºÅ ÐÕÃû

P(BA)?0.8,P(BA)?0.1£»P(BA)?0.2,P(BA)?0.9£» Ó¦Óñ´Ò¶Ë¹¹«Ê½µÃËùÇó¸ÅÂÊΪ£º £¨1£©P(AB)?P(A)P(BA)P(AB)0.6?0.8??

P(B)P(A)P(BA)?P(A)P(BA)0.6?0.8?0.4?0.1 =0.923

P(A)P(BA)P(AB)0.4?0.9 £¨2£©P(AB)? ??P(B)P(A)P(BA)?P(A)P(BA)0.4?0.9?0.6?0.2 =0.75

µÚ°Ë½Ú Ëæ»úʼþµÄ¶ÀÁ¢ÐÔ

Ò»¡¢Ñ¡Ôñ

1.ÉèP(A)=0.8£¬P(B)=0.7£¬P(AB)=0.8£¬ÔòÏÂÁнáÂÛÕýÈ·µÄÊÇ£¨ C £©

(A) ʼþAÓëB»¥²»ÏàÈÝ (B) A?B

(C) ʼþAÓëB»¥Ïà¶ÀÁ¢ (D) P(A?B)?P(A)?P(B)

2.ÉèA¡¢BÊÇÁ½¸öÏ໥¶ÀÁ¢µÄËæ»úʼþ,P£¨A£©?P£¨B£©?0£¬ÔòP(A?B)?£¨ B £©

?P£¨B£©(A) P£¨A£© (B) 1?P£¨A£© ?P£¨B£©?P£¨B£©(C) 1?P£¨A£© (D) 1?P£¨AB£©

¶þ¡¢Ìî¿Õ

1.ÉèAÓëBΪÁ½Ï໥¶ÀÁ¢µÄʼþ£¬P(A?B)=0.6£¬P(A)=0.4£¬ÔòP(B)=

1 32.¼Ó¹¤Ä³Ò»Áã¼þ¹²Ðè¾­¹ýÈýµÀ¹¤Ðò¡£ÉèµÚÒ»¡¢µÚ¶þ¡¢µÚÈýµÀ¹¤ÐòµÄ´ÎÆ·ÂÊ·Ö±ðÊÇ2%¡¢3%¡¢5%¡£¼Ù¶¨¸÷µÀ¹¤ÐòÊÇ»¥²»Ó°ÏìµÄ£¬Ôò¼Ó¹¤³öÀ´µÄÁã¼þµÄ´ÎÆ·ÂÊÊÇ 0.09693

Èý¡¢¼ò´ðÌâ

1.Ò»¸ö¹¤ÈË¿´¹ÜÈý̨³µ´²£¬ÔÚһСʱÄÚ³µ´²²»ÐèÒª¹¤ÈË¿´¹ÜµÄ¸ÅÂÊ£ºµÚһ̨µÈÓÚ0.9£¬µÚ¶þ̨µÈÓÚ0.8£¬µÚÈý̨µÈÓÚ0.7¡£ÇóÔÚһСʱÄÚÈý̨³µ´²ÖÐ×î¶àÓÐһ̨ÐèÒª¹¤ÈË¿´¹ÜµÄ¸ÅÂÊ¡£

½â£ºÉèʼþAi±íʾµÚį³µ´²²»ÐèÒªÕչܣ¬Ê¼þAi±íʾµÚį³µ´²ÐèÒªÕչܣ¬£¨i=1£¬2£¬3£©£¬ ¸ù¾ÝÌâÉèÌõ¼þ¿ÉÖª£º

P(A1)?0.9,P(A1)?0.1

µÚ 6 Ò³

¸ÅÂÊÂÛÓëÊýÀíͳ¼Æ±ê×¼×÷ÒµÖ½ °à¼¶ ѧºÅ ÐÕÃû

P(A2)?0.8,P(A2)?0.2 P(A3)?0.7,P(A3)?0.3

ÉèËùÇóʼþΪB£¬ÔòP(B)?P(A1A2A3?A1A2A3?A1A2A3?A1A2A3) ¸ù¾ÝʼþµÄ¶ÀÁ¢ÐԺͻ¥²»ÏàÈÝʼþµÄ¹Øϵ£¬µÃµ½£º P(B)?P(A1)P(A2)P(A3)?P(A1)P(A2)P(A3) ?P(A1)P(A2)P(A3)?P(A1)P(A2)P(A3)

?0.9?0.8?0.7?0.1?0.8?0.7?0.9?0.2?0.7?0.9?0.8?0.3 =0.902

2.ÈçÏÂͼËùʾ£¬Éè¹¹³ÉϵͳµÄÿ¸öµç×ÓÔª¼þµÄ¿É¿¿ÐÔ¶¼ÊÇp£¨0

12312536

£¨1£© £¨2£© ½â£º£¨1£©p(2?p)£»£¨2£©(2p?p)

33234564 µÚ¾Å½Ú ¶ÀÁ¢ÊÔÑéÐòÁÐ

Ò»¡¢Ñ¡Ôñ

1.ÿ´ÎÊÔÑé³É¹¦ÂÊΪp(0?p?1)£¬½øÐÐÖظ´ÊÔÑ飬ֱµ½µÚ10´ÎÊÔÑé²ÅÈ¡µÃ4´Î³É¹¦µÄ¸ÅÂÊΪ( B )

446336346445(A)C10p(1?p) (B)C9p(1?p) (C)C9p(1?p) (D)C9p(1?p)

¶þ¡¢Ìî¿Õ

1.ijÉäÊÖÔÚÈý´ÎÉä»÷ÖÐÖÁÉÙÃüÖÐÒ»´ÎµÄ¸ÅÂÊΪ0.875£¬ÔòÕâÉäÊÖÔÚÒ»´ÎÉä»÷ÖÐÃüÖеĸÅÂÊΪ 0.5

2.ÉèÔÚÈý´Î¶ÀÁ¢ÊÔÑéÖÐ,ʼþA³öÏֵĸÅÂÊÏàµÈ.ÈôÒÑ֪ʼþAÖÁÉÙ³öÏÖÒ»´ÎµÄ¸ÅÂʵÈÓÚ

19 ,ÔòʼþAÔÚÒ»´ÎÊÔÑéÖгöÏֵĸÅÂÊΪ 27Èý¡¢¼ò´ðÌâ

13

1.Éä»÷Ô˶¯ÖУ¬Ò»´ÎÉä»÷×î¶àÄܵÃ10»·¡£ÉèijÔ˶¯Ô±ÔÚÒ»´ÎÉä»÷ÖеÃ10»·µÄ¸ÅÂÊΪ0.4£¬µÃ9»·µÄ¸ÅÂÊΪ0.3£¬µÃ8»·µÄ¸ÅÂÊΪ0.2£¬Çó¸ÃÔ˶¯Ô±ÔÚÎå´Î¶ÀÁ¢µÄÉä»÷Öеõ½²»ÉÙÓÚ

µÚ 7 Ò³

¸ÅÂÊÂÛÓëÊýÀíͳ¼Æ±ê×¼×÷ÒµÖ½ °à¼¶ ѧºÅ ÐÕÃû

48»·µÄ¸ÅÂÊ¡£

½â£ºÉèʼþA±íʾ5´ÎÉä»÷²»ÉÙÓÚ48»·£¬Ê¼þA1±íʾ5´ÎÉä»÷ÿ´Î¾ùÖÐ10»·£¬Ê¼þA2 ±íʾ5´ÎÉä»÷Ò»´ÎÖÐ9»·£¬4´ÎÖÐ10»·£¬Ê¼þA3±íʾ5´ÎÉä»÷2´ÎÖÐ9»·£¬3´ÎÖÐ10»·£¬Ê¼þA4±íʾ5´ÎÉä»÷Ò»´ÎÖÐ8»·£¬4´ÎÖÐ10»·£¬²¢ÇÒA1,A2,A3,A4Á½Á½»¥²»ÏàÈÝ£¬ÓÉÓÚÿ´ÎÉä»÷ÊÇÏ໥¶ÀÁ¢µÄ£¬

ÔòËùÇó¸ÅÂÊP(A)?P(?A)??P(A)

iii?1i?1445114223114 ?(0.4)?C5(0.3)(0.4)?C5(0.3)(0.4)?C5(0.2)(0.4)

?0.1318

µÚ¶þÕ Ëæ»ú±äÁ¿¼°Æä·Ö²¼

µÚ¶þ½Ú ÀëÉ¢Ëæ»ú±äÁ¿

Ò»¡¢Ñ¡Ôñ

k1 ÉèÀëÉ¢Ëæ»ú±äÁ¿XµÄ·Ö²¼ÂÉΪ: P{X?k}?b?,(k?1,2,3,?),

ÇÒb?0£¬Ôò?Ϊ((A)??0µÄÈÎÒâʵÊý1(C)??1?b?)

(B)??b?11(D)??b?1?kn

½âÒòΪ?P{X?k}??b??1k?1k?1(1??n)?Sn??b??b¡¤1??k?1k(1??n)?¼´limSn?limb¡¤??1ÓÚÊÇ¿ÉÖª,µ±??1ʱ,b¡¤?1

n??n??1??1??1ËùÒÔ???1,(Òòb?0)ËùÒÔӦѡ(C).1?b¶þ¡¢Ìî¿Õ

1 Èç¹ûËæ»ú±äÁ¿XµÄ·Ö²¼ÂÉÈçÏÂËùʾ,ÔòC? .

X

0 1 2 3

µÚ 8 Ò³