年产十万吨二甲醚的设计 下载本文

[年产十万吨二甲醚装置分离精馏工段的工艺设计]

目录

摘要 .................................................................................................................. 2 ABSTRACT ..................................................................................................... 3 1绪论 ............................................................................................................... 4

1.1概述 .................................................................................................................................................... 4 1.1.1设计依据 ......................................................................................................................................... 4 1.1.2 设计规模及设计要求 .................................................................................................................... 4 1.1.3产品规格、性质及用途 ................................................................................................................. 4

㈠ 产品规格 .................................................................................................................................... 4 ㈡二甲醚性质 .................................................................................................................................. 4 ㈢ 二甲醚的用途 ............................................................................................................................ 5 1.1.4国内外各种工艺技术综述和比较 ................................................................................................. 7

㈠二甲醚工艺的国内外现状 .......................................................................................................... 7 ㈡技术分类及本设计采用方法 ...................................................................................................... 8 ㈢二甲醚分离过程设计 ................................................................................................................ 10

2精馏塔工艺设计 ........................................................................................... 12

2.1精馏塔物料衡算 .............................................................................................................................. 12 2.1.1 基础数据 ...................................................................................................................................... 12 2.1.2物料衡算 ....................................................................................................................................... 12

㈠物料衡算组织简图 .................................................................................................................... 12 ㈡ 质量分数转换为摩尔分数 ...................................................................................................... 12 ㈡ 质量分数转换为摩尔分数 ...................................................................................................... 13 ㈢清晰分割 .................................................................................................................................... 13 ㈣ 精馏工段工序物料衡算表 ...................................................................................................... 15 2.2精馏工段工艺计算 .......................................................................................................................... 16 2.2.1物料衡算(见2.1.2) .................................................................................................................. 16 2.2.2操作条件的确定 ........................................................................................................................... 16 2.3精馏塔设备计算 .............................................................................................................................. 18 2.3.1基础数据 ....................................................................................................................................... 18 2.3.2塔板数的确定 ............................................................................................................................... 22 2.3.3精馏塔主要尺寸计算 ................................................................................................................... 24 2.3.4塔板结构设计 ............................................................................................................................... 26 2.4浮阀塔提溜段与精馏段设计参数汇总 .......................................................................................... 28

1

[年产十万吨二甲醚装置分离精馏工段的工艺设计]

年产十万吨二甲醚装置分离精馏工段的工艺设计

摘要

近年来,二甲醚成为国际石油替代途径与新型二次能源的热点课题,引起各国关注与重视。

二甲醚的制备主要有甲醇脱水法和合成气一步法两种。与传统的甲醇合成二甲醚相比,一步法合成二甲醚工艺经济更加合理,在市场更具有竞争力,正在走向工业化。目前,制取二甲醚的最新技术是从合成气直接制取,相比较甲醇脱水制二甲醚而言,一步法合成二甲醚因为体系存在有未反应完成的合成气以及二氧化碳,要得到纯度较高的二甲醚,分离过程比较复杂。开发中的分离工艺主要采用吸收和精馏等化工单元操作过程得到纯度较高的二甲醚产品。本设计主要针对分离中的精馏工序进行工艺设计,分离二甲醚 、甲醇和水三元体系。精馏塔采用浮法塔,塔顶冷凝器装置采用全凝器,用来准确控制回流比;塔底采用水蒸汽加热,以提供足够的热量。通过计算得出理论塔板数,塔效率,筛孔数。通过筛板的流体力学验算,证明各指标数据均符合标准。以保证精馏过程的顺利进行并使效率尽可能的提高。

关键词: 二甲醚 分离 三元体系 精馏

2

[年产十万吨二甲醚装置分离精馏工段的工艺设计]

Annual output of 10,000 tons of dimethyl ether distillation

Section in the design of sepration device

ABSTRACT

In recent years, DME has become an alternative channel of international oil and new secondary energy and hot topics, That aroused national concern and attention.

Preparation of dimethyl ether mainly methanol dchydration and One-step synethesis. With the tradional methanol synethesis compared to synethesis of dimethyl ether,one-step synethesis of dimethyl ether process more rational economy, more competive in the market and it is moving towards industrialiazation. Curently , synethesis gas to dimethyl ether is the latest technology preparation of dimethyl ether. Compared with methanol dchydration , system of direct synthesis of DME as the existence of unreacted synthesis gas and carbon dioxide finished.If it want to get high purity dimethyl ether, more complicated separation process. Developed mainly in the separation process such as chemical absorption and distillation unit operation in the process of dimethylethyl ether with higher purity product.This design aimed at separating the distillation process for process design. Separation of DME , methanol and water ternary system. Design of distillation towers used valve. Use the whole top of the tower condenser cooling device used to provide sufficient heat.Obtained by calculating the number of theoretical plate design and calculation of process dimensions derived column diametet, the effective tower, sieve number. Checking through the sieve of fluid mechanics, to prove that the indicator data are in line with standards to ensure the smooth progress of distillation process and to improve efficiency as much as possible.

Keywords:DME separate ternary system distillation

3

[年产十万吨二甲醚装置分离精馏工段的工艺设计]

1绪论

1.1概述 1.1.1设计依据

根据荆楚理工学院化工与药学院下达的设计任务书,模拟现有的浆态床一步法(即合成气一步法)二甲醚合成产业化技术,对二甲醚分离装置中的精馏工段进行设计。

1.1.2 设计规模及设计要求

①设计规模: 年产10.0万吨二甲醚分离装置(合成气一步法),设计该分离装置中精馏工段工艺精馏,精馏装置采用浮阀塔。一年按330个工作日,每个工作日按24小时计算; ②产品要求:二甲醚≥99%;

③二甲醚各分离过程中的组成如下:(表中数据均为质量分数) 组成 H2 惰性气体 CO CO2 CH4 DME CH3OH H2O 反应后入冷凝器的气体 0.1797 0.0059 0.0929 0.1101 0.1711 0.1526 0.0217 0.2660 吸收塔入口 精馏塔进料 精馏塔塔顶 0.2870 0.0094 0.1483 0.1709 0.2730 0.1097 0.0004 0.0013 0 0 0 0 0 0.0309 0.0043 0.9618 0 0 0 0 0 0.999 0.001 0 精馏塔塔底 0 0 0 0 0 8.14×10 0.007819 0.9921 -51.1.3产品规格、性质及用途

㈠ 产品规格:二甲醚≥99%(质量含量) ㈡二甲醚性质

物理性质:二甲醚亦称甲醚,英文dimethylether,英文缩写DME,化学分子式(CH30CH3 ),

4

[年产十万吨二甲醚装置分离精馏工段的工艺设计]

分子量为46.07,是重要的甲醇衍生物,沸点-24℃,凝固点-140℃。二甲醚是一种含氧有机物,溶于水,在大气中可以降解,属于环境友好型物质。二甲醚在常温下是一种无色气体,具有轻微的醚香味。二甲醚无腐蚀性、无毒、在空气中长期暴露不会形成过氧化物,燃烧时火焰略带光亮。

二甲醚的危险特性:二甲醚为易燃气体。与空气混合能形成爆炸性混合物。接触热、火星、火焰或氧化剂易燃烧爆炸。接触空气或在光照条件下可生成具有潜在爆炸危险性的过氧化物。

气体比空气重,能在较低处扩散到相当远的地方,遇明火会引着回燃。若遇高热,容器内压增大,有开裂合爆炸的危险。

二甲醚的毒性:二甲醚为弱麻醉剂,对呼吸道有轻微的刺激作用,长期接触皮肤发红、水肿、生疱。浓度为7.5%(体积)时,吸入12分钟后仅自感不适。浓度到8.2%(体积)时,经21分钟引起供给失调,产生视觉障碍,30分钟后轻度麻醉,血液流向头部,浓度为14%(体积)时,经23分钟引起运动工济失调及麻醉,经26分钟失去知觉,皮肤接触甲醚时易冻伤。空气中允许浓度为400ppm。二甲醚的物理性质见表1-1

㈢ 二甲醚的用途: 替代氯氟烃做气雾剂

随着世界各国的环保意识日益增强,以前作为气溶工业中气雾剂正逐步被其它无物质所替代。 ⑴ 用作制冷剂和发泡剂

由于DME的沸点较低,汽化热较大,汽化效果好,其冷凝和蒸发特性接近氟氯烃,因此DME作制冷剂非常有前途。国内外正在积极开发它在冰箱、空调、食品保鲜剂等方面的应用,以代替氟氯烃,尤其是氟利昂。关于DME作发泡剂,国外已相继开发出利用DME作聚苯乙烯、聚氨基甲酸乙酯、热塑聚酯泡沫的发泡剂,发泡后的产品,孔的大小均匀,柔韧性、耐压性、抗裂性等都有所强调。 ⑵ DME用作燃料

由于DME具有液化石油气相似的蒸汽压,在低压下DME变为液体,在常温、常

5

[年产十万吨二甲醚装置分离精馏工段的工艺设计]

压下为气态,易燃、毒性很低,并且DME的十六烷值(约55倍)高,作为液化石油气和柴油汽车的待用条件已经成熟。由于它是一种优良的清洁能源,已日益受到国内外的广泛关注。在未来十年里,DME作为燃料的应用将难以估量的潜在市场,其应用前景十分乐观。可广泛用于民用清洁燃料、汽车发动机燃料、醇醚燃料。 ⑶ DME用作化工原料

DME 作为一种重要的化工原料,可以合成多种化学品及参与多种化学反应:与SO3反应可制的硫酸二甲酯:与HCL反应可合成烷基卤化物;与苯胺反应可合成N,N-二甲基苯胺;与CO反应可羰基合成乙酸甲酯、醋酐,水解后生成乙酸;与合成气在催化剂存在下反应生成乙酸乙烯;氧化羰化制碳化二甲酯;与H2S反应制备二甲基硫醚。此外,利用DME还可以合成低烯烃、甲醛和有机硅化合物;二甲醚还可以合成氢氰酸、甲醛等重要化学品。二甲醚与环氧乙烷反应,在卤素金属化合物和H3BO3的催化作用下,在50℃~55℃时生成乙二醇二甲醚、二乙二醇二甲醚、三乙二醇二甲醚、四乙二醇二甲醚的混合物,其主要产物乙二醇二甲醚是重要溶剂和有机合成的中间体。

目前,全球二甲醚总生产能力约为21万吨∕a,产量16万吨∕a左右,表1-1为世界二甲醚主要生产厂家及产品量。我国二甲醚总生产能力约为1.2万t∕a,产量约0.8万t∕a。表1-2为我国二甲醚主要生产厂家及产量。

据市场调查国内二甲醚需求远远超过供给量,目前国内仅气雾剂一项需求量达到1.5~1.8万吨∕年,而高纯度的二甲醚还依赖进口。表1-3为2005年到2010我国对二甲醚的市场需求预测,可见,二甲醚市场应用前景广阔,因此对二甲醚的生产工艺进行研究很有必要。

表1-2世界二甲醚主要生产厂家及产量

6

[年产十万吨二甲醚装置分离精馏工段的工艺设计]

表1-3我国二甲醚主要生产厂家和产量

表1-4我国对二甲醚的市场需求预测

1.1.4国内外各种工艺技术综述和比较

㈠二甲醚工艺的国内外现状

我国90年代前后开始气相甲醇法(两步法)生产二甲醚工艺技术及催化剂的开发,很快建立起了工业生产装置。近年来,随着二甲醚建设热潮的兴起,我国两步法二甲醚工艺技术有了进一步的发展,工艺技术已接近或达到国外先进水平。

山东久泰化工科技股份有限公司(原临沂鲁明化工有限公司)开发成功了具有自主知识产权的液相法复合酸脱水催化生产二甲醚工艺,已经建成了5000吨/年生产装置,经一年多的生产实践证明,该技术成熟可靠。该公司的第二套3万吨/年装置也将投产。山东久泰二甲醚工艺技术已经通过了山东省科技厅组织的鉴定,被认定为已达国际水平。特别是液相法复合酸脱水催化剂的研制和冷凝分离技术,针对性地克服了一步法合成和气相脱水中提纯成本高、投资大的缺点,使反应和脱水能够连续进行,减少了设备腐蚀和设备投资,总回收率达到99.5%以上,产品纯度不小于99.9%,生产成本也较气相法有较大的降低。

2003年8月由泸天化与日本东洋工程公司合作开发的两步法二甲醚万吨级生产装置试车成功。该装置工艺流程合理,操作条件优化,具有产品纯度高、物耗低、能耗低的特点,在工艺水平、产品质量和设备硬件自动化操作等方面均处于国内先进水平。

杭州大学采用自制的二甲醚催化剂,利用合成氨厂现有的半水煤气,在一定反应温度、

7

[年产十万吨二甲醚装置分离精馏工段的工艺设计]

压力和空速下一步气相合成二甲醚。CO单程转化率达到60%~83%,选择性达95%。该技术现巳在湖北田力公司建成了年产1500吨二甲醚的工业化装置。该装置既可生产醇醚燃料,又可生产99.9%以上的高纯二甲醚,CO转化率70%-80%。这是国内第一套直接由合成气一步法生产高纯二甲醚的工业化生产装置。

对于两步法二甲醚工艺技术,无论是气相法还是液相法,国内技术均已经达到先进、成熟可靠的水平,完全有条件建设大型生产装置。由国内开发的合成气一步气相法制二甲醚技术基本成熟,并已建成千吨级装置。但对于建设大型二甲醚装置,国内技术尚需实践验证。

㈡技术分类及本设计采用方法

①分类

目前合成DME可分为:1.液相甲醇脱水法、2.气相甲醇脱水法、3.合成气一步法、4.CO2

加氢直接合成法、5.催化蒸馏法。其中前两种方法比较成熟,后三种方法正处于研究和工业放大阶段。

②本设计采用的合成气一步法概述

前述具体方法此处不做详述,仅对本设计采用合成气一步法稍加介绍:合成气一步法制DME是在合成甲醇技术的基础上发展起来的,由合成气经将液态床反应器一步合成DME,采用具有甲醇合成和甲醇脱水组分的双功能催化剂。因此,甲醇合成催化剂和甲醇脱水催化剂的比例对DME生成速度和选择性有很大的影响,是其研究重点。其过程的主要反应为:

甲醇合成反应(CO氢化)

CO + 2H2 = CH3OH + 90.14 kJ/mol (1)

水煤气变换反应

CO + H2O = CO2 + H2 + 40.19 kJ/mol (2)

甲醇脱水反应

2CH3OH = CH3OCH3 + H2O + 23.14 kJ/mol (3) 甲醇合成(CO2氢化作用)

CO2 + 3H2 = CH3OH + H2O + 49.4 kJ/mol (4) 总反应

3CO + 3H2 = CH3OCH3 + CO2 + 258.12 kJ/mol (5)

在该反应体系中,由于甲醇合成反应和脱水反应同时进行,使得甲醇一经

生成即被转化为DME,从而打破了甲醇合成反应的热力学平衡限制,使CO转化 率比两步反应过程中单独甲醇合成反应有显著提高。

8

[年产十万吨二甲醚装置分离精馏工段的工艺设计]

③与其余方法的比较:

作为纯粹的DME生产装置而言,表1-5列出了5种不同工艺的生产技术经济指标。由表1—5可以看出,汽相甲醇脱水法制DME,相对液相法,汽相法具有操作简单,自动化程度较高,少量废水废气排放,排放物低于国家规定的标准,DME选择性和产品质量高等优点。同时该法也是国内外生产DME的主要方法。

表1-5二甲醚各种合成法经济技术比较

优点:由合成气一步法制DME的生产技术成本远较硫酸法和甲醇脱水法为低,因而具有明显的竞争性。具体来说,与甲醇脱水法相比,具有流程短、投资省、能耗低等优点,而且可获得较高的单程转化率。合成气一步法现多采用浆态床反应器,其结构简单简单,便于放出反应热,易实现恒温操作。它可直接利用CO含量高的煤基合成气,还可以在线卸载催化剂。因此,将液态合成气法制DME具有诱人前景,将是煤炭洁净利用的重要途径之一。合成气法所用的合成气可由煤、石油、重油、渣油气化及天然气转化而得,原料经济易得,因而该工艺可用于化肥和甲醇装置适当改造后生产DME,易形成较大规模生产;也可采用从化肥和甲醇生产装置侧线抽得合成气的方法,适当增加少量气化能力,或减少甲醇和氨的的生产能力,用以生产DME.

缺点:但相对其它两类方法,目前该方法正处于工业放大阶段,规模较小,另外,它对催化剂、反应压力要求较高,产品的分离纯度低,二甲醚选择性低,这都是问题。

④一步法研究概况

近年来,我国在合成气一步法制二甲醚方面的技术开发也很积极,而且一些科研院所

和大学都取得了较大进展。

兰化研究院、兰化化肥厂与兰州化物所共同开展了合成气法制二甲醚的5mL小试研究,重点进行工艺过程研究、催化剂制备及其活性、寿命的考察。试验取得良好结果:CO转化率>85%;选择性>99%。两次长周期(500h、1000h)试验表明:研制的催化剂在工业原料合成气中有良好的稳定性;二甲醚对有机物的选择性>97%;CO转化率>75%;二甲醚产品纯度>99.5%;二甲醚总收率为98.45%。

9

[年产十万吨二甲醚装置分离精馏工段的工艺设计]

中科院大连化物所采用复合催化剂体系对合成气直接制二甲醚进行了系统研究,筛选出SD219-Ⅰ、SD219-Ⅱ及SD219-Ⅲ型催化剂,均表现出较佳的催化性能,CO转化率达到90%,生成的二甲醚在含氧有机物中的选择性接近100%。

清华大学也进行了一步法二甲醚研究,在浆态床反应器上,采用LP+Al2O3双功能催化剂,在260-290℃,4-6MPa的条件下,CO单程转化率达到55%~65%,二甲醚的选择性为90-94%。

目前,国内的浙江大学、山西煤化所、西南化工研究院、华东理工大学等单位也都致力于合成气一步法制二甲醚的研究工作。

杭州大学采用自制的二甲醚催化剂,利用合成氨厂现有的半水煤气,在一定反应温度、压力和空速下一步气相合成二甲醚。CO单程转化率达到60%~83%,选择性达95%。该技术现巳在湖北田力公司建成了年产1500吨二甲醚的工业化装置。该装置既可生产醇醚燃料,又可生产99.9%以上的高纯二甲醚,CO转化率70%-80%。这是国内第一套直接由合成气一步法生产高纯二甲醚的工业化生产装置。

由国内开发的合成气一步气相法制二甲醚技术基本成熟,并已建成千吨级装置。但对于建设大型二甲醚装置,国内技术尚需实践验证。

㈢二甲醚分离过程设计

二甲醚分离精馏装置图(图1—1)

反应后的气体6在温度为200℃~300℃ ,压力为1.5-1.6MPa,经冷凝器1冷凝,冷凝温度为40℃,大部分二甲醚蒸汽在此被冷凝,甲醇蒸汽也被冷凝。含有不凝气体H2、CO、CO2和少量惰性气体和CH4及未冷凝气体的二甲醚气体的未冷凝气体 16 经减压到

10

[年产十万吨二甲醚装置分离精馏工段的工艺设计]

0.6-4.8MPa,进入吸收塔二下部,在2.0MPa,在20℃-35℃下用软水吸收,冷凝器一的底流产物粗二甲醚溶液7和吸收塔2 的底流产物醚水溶液8进入闪蒸罐3,闪蒸罐的温度为40-100℃。闪蒸后的气体9送入吸收塔2底部;闪蒸罐3底流产物醇醚溶液10,进入二甲醚精馏塔4,塔顶产物为精二甲醚12;底流产物为醇醚溶液11。醚水溶液8进入闪蒸罐3的压力为0.1-0.9MPa。闪蒸罐3底流产物纯醚溶液10进入二甲醚精馏塔4的温度为80-150℃。二甲醚精馏塔4的压力为0.15—2.2MPa,塔顶温度为20—90℃,塔釜温度为100—200℃。二甲醚精馏塔4的底流产物粗甲醇溶液11进入甲醇回收塔5,其底流产物为软水13,塔侧线 产物为精甲醇14。高级醇浓集于精馏塔顶部塔板上侧线采出。甲醇回收塔的压力为0.1—0.8MPa,塔釜温度为80—150℃。塔顶温度为40—90℃,。吸收塔尾气15去变压吸附或膜分离提取有用成分CO、H2后,返回二甲醚合成单元做合成原料。

二甲醚生产过程系统循环结构图(图1—2)

二甲醚分离工艺塔设计(图1—3)

11

[年产十万吨二甲醚装置分离精馏工段的工艺设计]

2精馏塔工艺设计

2.1精馏塔物料衡算 2.1.1 基础数据

(一)生产能力:10万吨/年,一年按330天计算,即7920小时。

(二)产品二甲醚的纯度:二甲醚≥99%。

(三)计算基准(kg/h)P=108÷7920=1.26262×103(kg/h)=274.0669 (mol/h)

2.1.2物料衡算

㈠物料衡算组织简图

醚水 DME:0.0309 CH3OH:0.0043 H2O:0.9618 塔顶 塔底 DME 8.14×10-5 DME 1000.999 806040200第一季度第三季度CH3OH 0.001 东部西部北部CH3OH 0.9921 H2O 0.9921 12

1008060东部[年产十万吨二甲醚装置分离精馏工段的工艺设计]

㈡ 质量分数转换为摩尔分数

MDME=46.07g/mol MH20 =18.02 g/mol MCH3OH=32.04 g/mol

根据 ai/Mi÷∑ai/M算出,其中ai—质量分数;Mi—摩尔质量

⑴ 进料组分

⑵ 塔顶组成

⑶ 塔釜组成

㈢清晰分割

以DME为轻关键组分,CH3OH为重关键组分,H2O为非关键组分

① 物料衡算

13

[年产十万吨二甲醚装置分离精馏工段的工艺设计]

XW.DME=3.195×10-5 X D.CH3OH=0.001400 D=274.07/0.9986=274.451kmol/h

清晰分割法设计过程(表2-4)

联立 0.0123F—3.159×10W+0.001400D+0=D

F = D + W

以下为部分迭代原始数据(单位为mol/h)

F进料 22250 22255 22260 22265 22270 22275 22280 22285 22290 22295 22300 22305 22310 22315 22320 22325 22330 22335 22340 22345 22350 22355 22360 22365 22370 22375

-5

W塔釜 21975.54887 21980.54887 21985.54887 21990.54887 21995.54887 22000.54887 22005.54887 22010.54887 22015.54887 22020.54887 22025.54887 22030.54887 22035.54887 22040.54887 22045.54887 22050.54887 22055.54887 22060.54887 22065.54887 22070.54887 22075.54887 22080.54887 22085.54887 22090.54887 22095.54887 22100.54887 D塔顶 274.45113 274.45113 274.45113 274.45113 274.45113 274.45113 274.45113 274.45113 274.45113 274.45113 274.45113 274.45113 274.45113 274.45113 274.45113 274.45113 274.45113 274.45113 274.45113 274.45113 274.45113 274.45113 274.45113 274.45113 274.45113 274.45113

14

左边 273.365024 273.426366 273.4877081 273.5490501 273.6103922 273.6717342 273.7330763 273.7944183 273.8557604 273.9171024 273.9784445 274.0397865 274.1011286 274.1624706 274.2238127 274.2851547 274.3464968 274.4078388 274.4691809 274.5305229 274.591865 274.653207 274.7145491 274.7758911 274.8372332 274.8985752 右边D 274.45113 274.45113 274.45113 274.45113 274.45113 274.45113 274.45113 274.45113 274.45113 274.45113 274.45113 274.45113 274.45113 274.45113 274.45113 274.45113 274.45113 274.45113 274.45113 274.45113 274.45113 274.45113 274.45113 274.45113 274.45113 274.45113

[年产十万吨二甲醚装置分离精馏工段的工艺设计]

22380 22385 22390 22395 22105.54887 22110.54887 22115.54887 22120.54887

274.45113 274.45113 274.45113 274.45113

274.9599173 275.0212593 275.0826014 275.1439434

274.45113 274.45113 274.45113 274.45113

由此可得F=22340kmol/h w=22065kmol/h D=274.45kmol/h

㈣ 精馏工段工序物料衡算表

表2-5精馏工序物料衡算表

质量流率质量分数 摩尔流率(kg/h) (kmol/h) 12659.21 176.7961 39660.88 12631.32 8.79341 88.4407 3119.904 395831.9 0.03090 0.004300 0.9648 0.999 0.001 8.14×10-5 0.007819 0.9921 274.782 55.1798 22009.37 274.1767 0.27445 1.9197 97.37527 21966.25 料向 进 料 出 料 塔 顶 塔 釜 组分 DME CH3OH H2O DME CH3OH DME CH3OH H2O 摩尔分数 0.01230 0.002470 0.9852 0.9986 0.0014 3.195×10-5 0.004413 0.9955

15

[年产十万吨二甲醚装置分离精馏工段的工艺设计]

2.2精馏工段工艺计算 2.2.1物料衡算(见2.1.2) 2.2.2操作条件的确定

(一)进料温度的计算(泡点)—饱和液体进料

(1)已知体系总压强P总=200kpa, 即P总=1520mmHg物料饱和液体进料,故进料的泡点温度为进料温度。

(2)安托万公式

Ln Pis = A – B/(T+C) (Pis :mmHg, T: K) 查《石油化工基础数据手册》

表2-6安托万公式数据表

(3)采用试差法计算

压力不太高时按完全理想息计算,Ki=ln Pis/p

T 给定P Y 设定T Ki=ln Pis/p ∑KiXi - 1≤ε 结束

调整T N yi

图2-2试差法结构图

16

[年产十万吨二甲醚装置分离精馏工段的工艺设计]

试差过程见表2-7

表2-7进料温度试差过程

结果在392.70K,即119.55℃时,∑KiXi≈1,故进料温度为392.70K

(二) 塔顶露点温度计算

操作压力:P总==1520mmHg

T 给定P Y 设定T Ki=ln Pis/p ∑yi/Ki≤ε 结束 调整T N Xi

图2-3试差法结构图

试差过程见2-8

表2-8试差过程

结果:即在332.25K,即59.10℃时收敛,故塔顶温度为332.25K (三) 塔釜泡点温度计算 操作压力:P总=1520mmHg

T 给定P Y 设定T Ki=ln Pis/p ∑KiXi - 1≤ε 结束

调整T N yi

图2-4试差法结构图

17

[年产十万吨二甲醚装置分离精馏工段的工艺设计]

结果在393.50K即120.35℃时,∑KiXi≈1,故进料温度为393.50K

2.3精馏塔设备计算 2.3.1基础数据

(一) 塔压:1520mmHg 进料温度:TF=392.70K

塔温 塔顶温度:TD =332.25K

塔釜温度:TW =393.50K

(二)密度

经内插法算得:

18

[年产十万吨二甲醚装置分离精馏工段的工艺设计]

已知各组分在液相、气相所占的比例,如表2-12所示

(1) 塔顶密度的计算

① 液相平均密:

② 气相平均密度:

(2)进料板密度的计算 ①液相平均密:

②气相平均密度

19

[年产十万吨二甲醚装置分离精馏工段的工艺设计]

(2) 塔釜密度的计算

① 液相平均密度:

② 气相平均密度:

③ 精馏段和提馏段的密度计算

精馏段

提馏段

(三)黏度的计算

20

[年产十万吨二甲醚装置分离精馏工段的工艺设计]

经计算得

21

[年产十万吨二甲醚装置分离精馏工段的工艺设计]

2.3.2塔板数的确定

(一)最小回流比Rmin的确定 ①相对挥发度

本设计以DME为轻关键组分A; CH3OH为重关键组分B;H20为非关键组分C;以重关键组分为基准物,即α

BB = 1。

②最小回流比Rmin

本设计为泡点进料,即饱和液体进料,q=1 恩特伍德公式:

(二)实际回流比

取实际回流比为最小回流比的1.15倍, 则R=1.15Rmin=1.15×2.427=2.791

22

[年产十万吨二甲醚装置分离精馏工段的工艺设计]

(三)最小理论板数的确定

故最小理论塔数Nmin =3.853 (不包括再沸器) (一) 全塔理论板数的确定

由《化工原理》下册吉利兰图查得

Nmin=3.853代人,求得N=10.7(不包括载沸器)

(二) 精馏段和提馏段理论板数的确定

平均相对挥发度:

(三) 实际板数的确定

① 板效率

23

[年产十万吨二甲醚装置分离精馏工段的工艺设计]

② 塔内实际板数

取实际板层数为27块(不包括再沸器)

(四) 精馏段和提馏段实际板数

取实际精馏段塔板数为12块,提馏段实际板数为15块,进料板的位置为由下到上数的第十六块板

2.3.3精馏塔主要尺寸计算

(一)流量计算

(1) 进料:

DME: FxDME= 12659.21 (kg/h) =3.51645(kg/s) CH3OH: FxCH3O=1767.961(kg/h)=0.4911(kg/s) H2O: FxH20= =39660.88 (kg/h)=110.1691(kg/h)

(2) 精馏段: 气相流量:

V=L+D=(R+1)D=3.791×274.45=1040.44(kmol/h) =0.289011(kmol/s)=3352.98(kg/h)=9.311938(kg/s) 0.2890×32.67 2.259 2.259 =4.179(m3/s) Vh=15046.9(m3/h) 液相流量:

L=RD=2.791×274.45113=765.993(kmol/h)=0.21277( kmol/s)

=6.8556(kg/s)=24680.29(kg/h)

LS=(0.21277*32.22)/749.8=0.009143(m3/s)

24

[年产十万吨二甲醚装置分离精馏工段的工艺设计]

Lh=32.9149(m3/h)

(3) 提馏段: 气相流量

V’=V=1040.44(kmol/h)=0.289011(kmol/s)=3352.98(kg/h)=9.311938(kg/s) VS’=(0.289011×18.75)/1.148=4.720345(m3/s) Vh’=1.6993×104(m3/h) 液相流量

L’=L+F=765.993+22340=23105.993(kmol/h)=6.418( kmol/s) =4.2145×105(kg/h)=117.07(kg/s) Ls’=(6.418×18.24)÷922.8=0.126857(m3/s) Lh’=456.68(m3/h) (二)塔径的计算

(2) 精馏段计算:

???L???????V????0.5?Ls ??V?s474.98??0.0091??3?????4.1932.259????0.5?0.0397 26 初选塔板间距HT?350mm及板上液层高度hL?70mm,则:

HT?hL?0.35?0.07?0.28m

25

[年产十万吨二甲醚装置分离精馏工段的工艺设计]

根据以上数据,查史密斯关联图C20?0.054。由于物系表面张力为30.62dyn/cm,不接

???近C20,需要校正:C?C20??20??0.2?30.62??0.054??20??0.2?0.06400

umax?C??L??V?/?V?0.064?847.1?2.894?/2.259?1.164(m/s)

取安全系数为0.7,则u?0.7umax?0.815m/s 塔径:D?4Vs/?u?4?1.254/3.14?0.8150?1.397m

按标准塔径圆整为D=1.4m,则塔面积:A=1.539(m)

空塔气速:u=0.8146(m/s) (3)提馏段计算:

?Ls'???L'???V'?????'???s??V?0.5?0.12685??922.8??????4.72031.148????0.5?0.7619取塔板间距HT'?400mm及板上液层

高度hL'?0.09m,则:HT'?hL'?0.4?0.09?0.31m

根据以上数据,查史密斯关联图C20'?0.02599。由于物系表面张力为54.30dyn/cm,

???不接近C20’,需要校正:C'?C20'??20??0.2?54.30??0.02599??20??0.2?0.0317

umax'?C'??L'??V'?/?V'?0.03174?922.8?1.148?/1.148?0.899(m/s)

取安全系数为0.7,则u'?0.7umax'?0.6295m/s 塔径:D'?4Vs/?u?4?1.416/3.14?0.6295?1.693m

按标准塔径圆整为D=1.8m,则塔面积:A=2.545(m)

空塔气速:u’=0.5565(m/s)

2.3.4塔板结构设计

(一)精馏段

板间距 HT=0.35m,取板上液层高度hL=0.07m 塔径D=1.4m

根据塔径和液体的流量,选用弓形降液管,不设进口堰,塔板采用单溢流和分块式组装。

(1) 溢流装置 ① 堰长lW

取堰长lW=0.65D,即lW=0.65×1.4=0.91(m) ② 堰上液层高度hOW

26

[年产十万吨二甲醚装置分离精馏工段的工艺设计]

how?0.00284?1.02?7.680/0.91?③ 出口堰高:hw?hL?how

2/3?0.011990782m?0.006m

符合要求。一般要求堰上液层高度不小于6mm,以免液体在堰上分步均匀。

hw?hL?how?0.07?0.01199?0.05801m

④ 降液管的底隙高度ho

液体通过降液管底隙的流速一般为0.07~0.25m/s,取液体通过降液管底隙的流速

??0.08m/s,则有: uoho?Ls0.009143 ??0..12559m(ho不宜小于0.02~0.025m,本结果满足要求)

?0.91?0.08lwuo

⑤降液管的宽度Wd和降液管的面积Af由lw/D?0.65,查化原下P147图11-16得Wd/D?0.126,Af/AT?0.07,即:

Wd?0.1764m,AT?0.785D2?1.5386m2,Af?0.107702m2。

⑥液体在降液管内的停留时间

??AfHT/Ls?0.1077?0.35/0.009143?4.12282s?5s(不符合要求)

故重新修正参数选取:HT=500mm 此时

) ??AfHT/Ls?0.1077?0.5/0.009143?5.889752s?5s (符合要求。

(3) 塔板布置及浮阀数目排列:

27

[年产十万吨二甲醚装置分离精馏工段的工艺设计]

浮阀排列方式采用等腰三角形叉排。

2.4浮阀塔提溜段与精馏段设计参数汇总

提留段与精馏段的算法一致,结果见后总表。

表2-22 浮阀塔工艺设计计算总表 塔径D,m 塔高H,m 塔板型式 塔板数(层) 空塔气数u,m/s 堰长l,m 堰高h,m 降液管底隙高度ho,m 浮阀数N,个 阀孔气速u,m/s 阀孔动能因数Fu 临界阀孔气速m/s 孔心距 t,m 排间距 t’m 单板压降 Pa 液体在降液管内清液层高度 H,m 液体在降液管内停留时间θ,s 泛点率% 33数值及说明 精馏段 提馏段 备 注 气相负荷上限(VS)max,m/s 气相负荷下限(VS)min,m/s

28

[年产十万吨二甲醚装置分离精馏工段的工艺设计]

Annual output of 10,000 tons of dimethyl ether distillation

Section in the design of sepration device

INTRODUCTION

Motor Vehicle population is increasing in China,and the country is faced with a serious energy supply problem. China’s smaller reserves of petroleum and risingdemand for petroleum products result in a net import postion which is not likely to be reversed. Therefore,strong effeorts should be made to find commercially viable alternatives to imported oil and oil products for automobiles to satisfy the short-and medium-term needs of the country. DME is one of the promising fuel substitutes for petroleum diesel fuel which can be used by compression ignition engines because it is a clean fuel with good self-ignition characteristics and almost smoke-free combustion. Numerous investigation of DME-fulled engines have indicated that DME offers an excellent promise as an alternative fuel for compression-ignition operation in the automotive sector with its ultra-low emissions.

The use of dimethyl ether(DME)as an alternative fuel appears to be a promising approach for simultaneously minimizing NOx and soot emission from conventional diesel engines. The low self-ignition temperature of 508K and the high oxygen content

Of 34.8 percent(mass fraction) are two major factors characterizing low soot and unburned total hydrocarbon(THC)emission

Preparation of dimethyl ether mainly methanol dchydration and One-step synethesis. With the tradional methanol synethesis compared to synethesis of dimethyl ether,one-step synethesis of dimethyl ether process more rational economy, more competive in the market and it is moving towards industrialiazation. Curently , synethesis gas to dimethyl ether is the latest technology preparation of dimethyl ether. Compared with methanol dchydration , system of direct synthesis of DME as the existence of unreacted synthesis gas and carbon dioxide finished.If it want to get high purity dimethyl ether, more complicated separation process. Developed mainly in the separation process such as chemical absorption and distillation unit operation in the process of dimethylethyl ether with higher purity product.This design aimed at separating the distillation process for process design. Separation of DME , methanol and water ternary system. Design of distillation towers used valve. Use the whole top of the tower condenser cooling device used to provide sufficient heat.Obtained by calculating the number of theoretical plate design and calculation of process dimensions derived column diametet, the effective tower, sieve number. Checking through the sieve of fluid mechanics, to prove that the indicator data are in line with standards to ensure the smooth progress of distillation process and to improve efficiency as much as possible.

29