单位根检验 下载本文

平稳性的单位根检验:DF检验、ADF检验、DFGLS检验、PP检验、KPSS检验、ERS检验和NP检验

(2011-12-21 12:13:27)

ADF检验

作用

检查序列平稳性的标准方法是单位根检验。有6种单位根检验方法:ADF检验、DFGLS检验、PP检验、KPSS检验、ERS检验和NP检验,本节将介绍DF检验、ADF检验。

比较

ADF检验和PP检验方法出现的比较早,在实际应用中较为常见,但是,由于这2种方法均需要对被检验序列作可能包含常数项和趋势变量项的假设,因此,应用起来带有一定的不便;其它几种方法克服了前2种方法带来的不便,在剔除原序列趋势的基础上,构造统计量检验序列是否存在单位根,应用起来较为方便。

来源

ADF检验是在Dickey-Fuller检验(DF检验)基础上发展而来的。因为DF检验只有当序列为AR(1)时才有效。如果序列存在高阶滞后相关,这就违背了扰动项是独立同分布的假设。在这种情况下,可以使用增广的DF检验方法(augmented Dickey-Fuller test )来检验含有高阶序列相关的序列的单位根。

步骤

一般进行ADF检验要分3步:

1 对原始时间序列进行检验,此时第二项选level,第三项选None.如果没通过检验,说明原始时间序列不平稳;

2 对原始时间序列进行一阶差分后再检验,即第二项选1st difference,第三项选intercept,若仍然未通过检验,则需要进行二次差分变换; 3 二次差分序列的检验,即第二项选择2nd difference ,第四项选择Trend and intercept.一般到此时间序列就平稳了!

在进行ADF检验时,必须注意以下两个实际问题:

(1)必须为回归定义合理的滞后阶数,通常采用AIC准则来确定给定时间序列模型的滞后阶数。在实际应用中,还需要兼顾其他的因素,如系统的稳定性、模型的拟合优度等。

(2)可以选择常数和线性时间趋势,选择哪种形式很重要,因为检验显著性水平的 t 统计量在原假设下的渐近分布依赖于关于这些项的定义。

① 若原序列中不存在单位根,则检验回归形式选择含有常数,意味着所检验的序列的均值不为0;若原序列中存在单位根,则检验回归形式选择含有常数,意味着所检验的序列具有线性趋势,一个简单易行的办法是画出检验序列的曲线

图,通过图形观察原序列是否在一个偏离 0 的位臵随机变动或具有一个线性趋势,进而决定是否在检验时添加常数项。

② 若原序列中不存在单位根,则检验回归形式选择含有常数和趋势,意味着所检验的序列具有线性趋势;若原序列中存在单位根,则检验回归形式选择含有常数和趋势,意味着所检验的序列具有二次趋势。同样,决定是否在检验中添加时间趋势项,也可以通过画出原序列的曲线图来观察。如果图形中大致显示了被检验序列的波动趋势呈非线性变化,那么便可以添加时间趋势项。

迪基-福勒检验

在统计学里,迪基-福勒检验(Dickey-Fuller test)可以测试一个自回归模型是否存在单位根(unit root)。迪基-福勒检验模式是D. A迪基和W. A福勒建立的。 解释

一个简单的AR(1)模型是是误差项。如果

是要检验的变量,t是时间,ρ是系数,ut则说明单位根是存在的。

回归模型可以写为Δyt = (ρ ? 1)yt ? 1 + ut = δyt ? 1 + ut,Δ是一阶差分。测试是否存在单位根等同于测试是否δ = 0。因为迪基-福勒检验测试的是残差项,并非原始数据,所以不能用标准t统计量。我们需要用迪基-福勒统计量。 迪基-福勒检验还可以扩展为增广迪基-福勒检验(Augmented Dickey-Fuller test),简称ADF检验。ADF检验和迪基-福勒检验类似,但ADF检验的好处在于它排除了自相关的影响。

参考

Dickey,D.A. and W.A. Fuller (1979),?Distribution of the Estimators for Autoregressive Time Series with a Unit Root,?Journal of the American Statistical Association,74,p 427–431

单位根检验(Unit Root Test)什么是单位根检验 单位根检验是针对宏

观经济数据序列、货币金融数据序列中是否具有某种统计特性而提出的一种平稳性检验的特殊方法,单位根检验的方法有很多种,包括ADF检验、PP检验、NP检验等。 单位根检验时间序列的单位跟研究是时间序列分析的一个热点问题。时间序列矩特性的时变行为实际上反映了时间序列的非平稳性质。对非平稳时间序列的处理方法一般是将其转变为平稳序列,这样就可以应用有关平稳时间序列的方法来进行相应得研究。对时间序列单位根的检验就是对时间序列平稳性的检验,非平稳时间序列如果存在单位根,则一般可以通过差分的方法来消除单位根,得到平稳序列。对于存在单位根的时间序列,一般都显示出明显的记忆性

和波动的持续性,因此单位根检验是本书中有关协整关系存在性检验和序列波动持续性讨论的基础。 单位根过程

定义2-1 随机序列{ },t=1,2,…是一单位根过程,若 =ρ +ε , t=1,2… (1)其中ρ=1,{ε }为一平稳序列,且 E[ε ]=0, V(ε )=? <∞, Cov(ε ,ε )=μ <∞ 这里σ=1,2…。特别地,若{ε }是独立同分布的,且E[ε ]=0,V(ε )=? <∞,则式(1)就变成一个随机游走序列,因此随机游走序列是一种最简单的单位根过程。将式(1)改写为下列形式:( 1-ρL) =ε , t=1,2,… 其中L为滞后算子,1-ρL为滞后算子多项式,其特征方程为1-ρz=0,有根z= 。当ρ=1时,时间序列存在一个单位根,此时{ }是一个单位根过程。当ρ<1时,{ }为平稳序列。而当ρ〉1时,{ }为一类具有所谓爆炸根的非平稳过程,它经过差分后仍然为非平稳过程,因此不为单整过程。一般情况下,单整过程可以称作单位根过程。在经济、金融时间序列中,常会遇到ρ非常接近1的情况,成为近似单位根现象。近似单位根是介于平稳序列I(0)和单正序列I(1)之间。一般情况下,单整过程可以称作单位根过程。 单位根检验的基础

单位根检验是建立ARMA模型、ARIMA模型、变量间的协整分析、因果关系检验等的基础。自Nelson和Plosser利用ADF检验研究了美国名义GNP等14个历史经济和金融时间序列的平稳性以后,单位根检验业已成为分析经济和金融时间序列变化规律和预测的重要组成部分。因此,单位根检验作为一种特殊的假设检验,其可靠性的研究以及如何寻求可靠性较高的检验方法或统计量多年来一直是时间序列分析中的重要课题。本书系统研究了广为应用的单位根检验法?ADF(DF)检验和PP检验的可靠性及检验程序的改进。 单位根检验研究

在离散时间序列模型中,如自回归移动平均(AR-MA)过程,模型的自回归部分的‘单位根’表明序列是不平稳的,即随时间的推进,它并没有回到给定值的趋势(长期均值)。模型的移动平均部分的单位根表明当进一步考察过去时间状态的序列时,此序列不能用一个受到对序列偏差当前估计的观测影响的自回归表示,即序列是不可逆的。 平稳和可逆的ARMA模型,不含单位根,总能被表示成无限阶自回归或移动平均模型。距离系数滞后于序列本身yt,或修正序列εt,随时间推移变小。博克斯和詹金斯提供了很全面的有关ARMA模型的介绍。 ARMA(p, q)模型: y-φ1 y-1-…-φpy-p= εt-θ1εt-1-…-θqεq,或利用滞后算子符号(LkXt≡Xt-k)可表示成φp(L)yt =θq(L)εt。最简单的情况,自回归模型(AR(1))当|φ1=1时,有一单位根(|φ1|<1时模型是平稳的),移动平均模型(MA(1))当|θ1 |=1时,有一单位根(θ1<1时模型是可逆的)。 纳尔逊和普洛索以及后来许多学者都表明ARMA模型的自回归部分出现的单位根在动态经济模型中有重要的结果。比如,有一个单位根的ARMA模型中经济变量倾向于回复到没有确定性的长期增长路径上,同时,当进一步预测将来的情形时,经济序列的水平的不确定性变得更大。因此,对于一个综合序列(包含一单位根),讨论其‘长期’均值或方差是无意义的。根据商业循环模型,单位根意味着至少序列的部分修正导致了序列水平的永久变化。 ARMA模型中自回归部分的单位根检验问题是复杂的。迪基(Dickey)和富勒(Fuller) (1979年)给出了回归的单位根?t-统计量?σ=(φ1-1)/s(φ1)的分布,它不是学生-t分布。他们阐述了在一般的AR(p)模型中怎样应用这个检验。根据迪基-富勒检验,纳

尔逊和普罗夏(1982年)称许多美国年度宏观经济时间序列似乎有单位根。他们说,这使人们对假设经济数据是平稳随机变量,可能在一个确定性的增长路径附近发生偏差的动态经济模型的有用性感到怀疑。 在股票价格研究中,单位根检验在进行经济分析时有重要的作用。有关股票价格(取对数)的随机游动模型是带有单位根的AR(1)模型。许多关于股票市场效率的争论都以罗伯特〃希勒提出的统计方法为中心。特别是,他的?美国总的股票价格和股息是沿着指数趋势线变化的随机变量?这一假定已表明对他的?在给定未来股息状态下,股票价格变化‘太大’?这一结论有重要的影响,参见克莱顿马什和默顿。 在迪基-富勒之后,一些学者提出了对自回归单位根的其他检验方法,这些方法对一般的ARMA(p, q)过程是适用的。包括赛义德和迪基、菲利普斯及菲利普斯和珀森等提出的方法。这些方法十分吸引人,因为它们不要求研究者对ARMA过程产生的数据作很强的假设,不付出一定的代价这个好处是不会有的。施韦尔特用蒙特卡洛试验表明当数据产生过程不是简单的AR过程时,这些单位根检验方法对有限大样本效果较差。特别地,施韦尔特用许多美国二次大战后月度或季度的宏观经济时间序列所符合的ARMA(1, 1)过程表明单位根检验的样本容量经常比渐近分布理论所表达的要大。例如,在有1000个观察值的样本下,一个名义上为5%的水平的检验可能错误地拒绝一个96%可能性有单位根的假设。 并且,用检验的功效去区别单位根和自回归根的问题在于它们很接近,除非其中一个特别小,换句话说,研究者相信数据生成过程是平稳的,但又含有很强的自回归循环;研究者如认为过程不平稳,但用统计检验的方法区别其不同未必靠得住。 移动平均过程中的单位根检验问题同样是复杂的。普洛索和施韦尔特(1977年)表明当序列不能消除一个确定的时间倾向时,在MA过程中就会产生单位根。区别单位根和移动平均根很接近的统计问题类似于上面讨论的AR过程。 最令人惊讶的是美国月度消费者物价指数通货膨胀率,实际利率和易变的股票收益等序列可能含有单位根。相关内容可参见纳尔逊和施韦尔特,1977年;弗伦斯、施韦尔特和斯坦博, 1987年;帕甘和施韦尔特,1990年;以及施韦尔特1987年。因为这些序列都是通过百分比增长率来表示的,因此怀疑不平稳的原因就消失了。 像年度资本国民生产总值这样的序列,是许多有关单位根的实用的宏观经济学文献的焦点,这些可能导致单位根产生的不平稳的来源是容易想象的。比如,技术的进步即经过若干时间积累起来的随机创造会导致随机游动行为。这样就容易理解名义价格水平可能包含单位根的许多原因。另一方面,通货膨胀率含有一个单位根就意味着(取对数)价格水平含有两个单位根,和那种行为一致的解释的集合是明显地较小。 即使怀疑一特定的经济序列含有单位根,不平稳的来源也是值得考虑的。比如,在消费者物价指数中不稳定的工艺变化可能引起单位根。但原因仅仅是因为劳动统计局在(产品)质量的改变上没有予以准确的调整。 在考察经济时间序列时,对于改变人口统计特征和计量实践的程度导致的不平稳,许多经济学家能恰当地忽视这些因素,因为它对经济理论影响甚微。另一方面,假如不平稳的结果来自因为技术或偏好的综和过程,在用数据标定他们错误指定的理论化结构时,对(长期)增长模型或(短期)商业循环模型感兴趣的经济学家可能犯严重的错误。只有认真地分析这些数据,包括用于产生数据的计量知识,才可能解决这些问题。 用来检验单位根的统计方法存在的弱点必然要求一些非标准的方法。事实上,许多经济时间序列显示了其持续性。关于单位根的争论看来还要持续很长时间。撇开其他的不谈,这些统计学的、经验的文献使许多理论学者把注意力集中在系列动态模型上,而这些模型可以帮助理解长期行为。