sets:
zone/A,B,C/; !A,B,CÈý¸öµØÇø;
number/1..4/; !¸÷µØÇø¿ÉÑ¡Ôñн¨µÄÏúÊÛµãÊýÄ¿£¬¿ÉÑ¡1~4ÖеÄÒ»¸öÊý£¬Í¨¹ýlinks°ÑzoneºÍnumberÁªÏµÆðÀ´;
links(zone,number):c,profit; !ÈôÔÚiµØÇøÐ½¨j¸öÏúÊ۵㣬Ôòc(i,j)=1,·ñÔòc(i,j)=0.profit(i,j)±íʾÔÚiµØÇøÐ½¨j¸öÏúÊÛµãµÄÀûÈó; endsets data:
profit=200 280 330 340 210 220 225 230 160 170 180 200; enddata
max=@sum(links:c*profit); @for(zone(I):
@sum(number(J):c(I,J))=1); !¶ÔÓÚÿһ¸öµØÇø£¬Ð½¨ÏúÊÛµãµÄÊýÄ¿ÊÇÒ»¶¨µÄ£¬cµÄºÍΪ1;
@sum(zone(I):@sum(number(J):c(I,J)*J))=6; !Èý¸öµØÇøÐ½¨µÄÏúÊÛµã×ÜÊýΪ6; @for(links(i,j):@bin(c(i,j))); !ÿһ¸öc(i,j)Ö»ÄÜÈ¡0»ò1; end
ÓÃLingoÇó½â£¬½á¹ûÈçÏ£º Global optimal solution found.
Objective value: 710.0000 Extended solver steps: 0 Total solver iterations: 0
Variable Value Reduced Cost C( A, 1) 0.000000 -200.0000 C( A, 2) 0.000000 -280.0000 C( A, 3) 1.000000 -330.0000 C( A, 4) 0.000000 -340.0000 C( B, 1) 1.000000 -210.0000 C( B, 2) 0.000000 -220.0000 C( B, 3) 0.000000 -225.0000 C( B, 4) 0.000000 -230.0000 C( C, 1) 0.000000 -160.0000 C( C, 2) 1.000000 -170.0000 C( C, 3) 0.000000 -180.0000 C( C, 4) 0.000000 -200.0000
ÔòÔÚA£¬B£¬CÇøÓòÓ¦·Ö±ðÐÂÔö3£¬1£¬2¸öÏúÊ۵㣬¿É»ñµÃµÄ×î´óÀûÈóΪ710ÍòÔª¡£
ËÄ¡¢Ä¿±ê¹æ»®
ÓÐ11¼þÈÎÎñ£¨A¡ªK£©·ÖÅäµ½4¸ö¹¤×÷Õ¾£¨1¡ª4£©£¬ÈÎÎñµÄÓÅÏÈ´ÎÐòÈçÏÂͼ¡£Ã¿¼þÈÎÎñËù»¨·ÑµÄʱ¼äÈçÏÂ±í¡£
(F) (A)
(B) (C)
(G)
(H) (D)
(E) (J) (K)
(I)
ÈÎÎñ A B C
D E F G H I J K 9 ?1,2,3,4)ʱ¼ä 45 11 9 50 15 12 12 12 12 8 ½â£ºÓñäÁ¿xik±íʾÈÎÎñi(i¿ö£¬xik?1±íʾ·ÖÅ䣬xikÄ¿±êº¯ÊýΪ
11?A,B,?,K)·ÖÅ䏸¹¤×÷Õ¾k(kµÄÇé
?0±íʾ²»·ÖÅ䣬ti±íʾÍê³É¸÷ÏîÈÎÎñËùÐèʱ¼ä£¬Ôò
minmax1?k?4?ti?1ixik
Ô¼ÊøÌõ¼þ£¨1£©£ºÃ¿ÏîÈÎÎñÖ»ÄÜÇÒ±ØÐë·ÖÅäÖÁÒ»¸ö¹¤×÷Õ¾À´×ö£¬¿ÉÒÔ±íʾΪ£º
4?k?1xik?1,i?1,2,?,11£»
Ô¼ÊøÌõ¼þ£¨2£©£º¸÷ÏîÈÎÎñ¼äÈç¹ûÓÐÓÅÏȹØÏµ£¬ÔòÅÅÔÚÇ°ÃæµÄÈÎÎñi¶ÔÓ¦µÄ¹¤×÷Õ¾£¨ÐòºÅ£©Ó¦µ±Ð¡ÓÚ£¨»òµÈÓÚ£©ÅÅÔÚºóÃæµÄÈÎÎñjËù¶ÔÓ¦µÄ¹¤×÷Õ¾£¨Ðò
4ºÅ£©£¬¼´¶ÔËùÓÐÓÐ˳ÐòµÄÈÎÎñiÔ¼ÊøÌõ¼þ£¨3£©£ºxik?j£º?k?1(kxjk?kxik)?0£»
?0»ò1¡£
ÕâÊÇÒ»¸ö·ÇÏßÐԹ滮£¨Ä¿±êº¯Êý·ÇÏßÐÔ£©£¬µ«¿ÉÒÔ»¯ÎªÏßÐԹ滮£¬Ôö¼ÓÒ»¸ö
11±äÁ¿£¬ÔÙÔö¼ÓËĸöÔ¼ÊøÌõ¼þ£º?i?1tixik?Z,k?1,2,3,4£¬Ä¿±êº¯Êý±äΪminZ¡£
LINGO³ÌÐòΪ£º
model: sets:
task/ A B C D E F G H I J K/:t;
pred(task,task)/ A,B B,C C,F C,G F,J G,J J,K D,E E,H E,I H,J I,J /;
station/1..4/;
tsx(task, station):x; endsets data:
T = 45 11 9 50 15 12 12 12 12 8 9; enddata
@for(task(i): @sum(station(k):x(i,k)) = 1);
@for(pred(i,j): @sum(station(k):k*x(j,k)-k*x(i,k))>= 0); @for(station(k):
@sum(txs(i,k):t(i)*x(i,k))<=cyctime); min= cyctime;
@for(txs:@bin(x)); end
¼ÆËãµÄ²¿·Ö½á¹ûΪ
Global optimal solution found at iteration: 1255 Objective value: 50.00000
Variable Value Reduced Cost CYCTIME 50.00000 0.000000 X( A, 1) 1.000000 0.000000 X( A, 2) 0.000000 0.000000 X( A, 3) 0.000000 45.00000 X( A, 4) 0.000000 0.000000 X( B, 1) 0.000000 0.000000 X( B, 2) 0.000000 0.000000 X( B, 3) 1.000000 11.00000 X( B, 4) 0.000000 0.000000 X( C, 1) 0.000000 0.000000 X( C, 2) 0.000000 0.000000 X( C, 3) 0.000000 9.000000 X( C, 4) 1.000000 0.000000 X( D, 1) 0.000000 0.000000 X( D, 2) 1.000000 0.000000 X( D, 3) 0.000000 50.00000 X( D, 4) 0.000000 0.000000 X( E, 1) 0.000000 0.000000 X( E, 2) 0.000000 0.000000 X( E, 3) 1.000000 15.00000 X( E, 4) 0.000000 0.000000 X( F, 1) 0.000000 0.000000 X( F, 2) 0.000000 0.000000 X( F, 3) 0.000000 12.00000 X( F, 4) 1.000000 0.000000 X( G, 1) 0.000000 0.000000 X( G, 2) 0.000000 0.000000 X( G, 3) 0.000000 12.00000 X( G, 4) 1.000000 0.000000 X( H, 1) 0.000000 0.000000 X( H, 2) 0.000000 0.000000 X( H, 3) 1.000000 12.00000 X( H, 4) 0.000000 0.000000
X( I, 1) 0.000000 0.000000 X( I, 2) 0.000000 0.000000 X( I, 3) 1.000000 12.00000 X( I, 4) 0.000000 0.000000 X( J, 1) 0.000000 0.000000 X( J, 2) 0.000000 0.000000 X( J, 3) 0.000000 8.000000 X( J, 4) 1.000000 0.000000 X( K, 1) 0.000000 0.000000 X( K, 2) 0.000000 0.000000 X( K, 3) 0.000000 9.000000 X( K, 4) 1.000000 0.000000
Îå¡¢·ÇÏßÐԹ滮
ÏÖÒª×öÒ»°ÙÌ׸ֹÜ, ÿÌ×Òª³¤Îª2.9m¡¢2.1mºÍ1.5mµÄ¸Ö¹Ü¸÷Ò»¸ù¡£ÒÑÖªÔÁϳ¤7.4m£¬ÎÊÓ¦ÈçºÎÏÂÁÏ£¬Ê¹ÓõÄÔÁÏ×îÊ¡¡£ 2.9m 2.1m 1.5m ÁÏÍ· I 2 0 1 0.1 II 1 2 0 0.3 III 1 1 1 0.9 IV 1 0 3 0 V 0 3 0 1.1 VI 0 2 2 0.2 VII 0 1 3 0.8 VIII 0 0 4 1.4 ÉèÓ÷½°¸¢ñ,¢ò,¡,¢ø·Ö±ð²ÃÔÁϸֹÜx1,x2, ?,x8¸ù, Ôò£º
Min z= x1+ x2+ x3+x4+ x5+x6+x7+x8 2x1+ x2+x3 + x4?100???2x2+x3+ 3x5 +2x6+ x7? 100 ??x1+x3+3x4+2x6+3x7+4x8?100?x,x,x,x,x,x,x,x ?012345678?ÉÏÌâÖÐ,Èç¹ûÿÌ×1.8mµÄ¸Ö¹ÜÒª70¸ù,ÒªÇóʹÓõÄÇиîģʽ²»³¬¹ý3ÖÖ.ÎÊÓ¦ÈçºÎÏÂÁÏ£¬Ê¹ÓõÄÔÁÏ×îÊ¡¡£
½â:Éèxi¡ª°´µÚiÖÖģʽÇиîµÄÔÁϸֹܸùÊý(i=1,2,3)r1i,r2i,r3i,r4i¡ªµÚiÖÖÇиîģʽÏÂ,ÿ¸ùÔÁÏÉú²ú2.9m¡¢2.1mºÍ1.5m,1.8mµÄ¸Ö¹ÜµÄÊýÁ¿. Ä¿±êº¯Êý(×ܸùÊý)
minx1?x2?x3?r11x1?r12x2?r13x3?100??r21x1?r22x2?r23x3?100 s.t.??r31x1?r32x2?r33x3?100?rx?rx?rx?70422433?411