X( W6, V8) 0.000000 3.000000
Row Slack or Surplus Dual Price 1 664.0000 -1.000000 2 0.000000 3.000000 3 22.00000 0.000000 4 0.000000 3.000000 5 0.000000 1.000000 6 0.000000 2.000000 7 0.000000 2.000000 8 0.000000 -4.000000 9 0.000000 -5.000000 10 0.000000 -4.000000 11 0.000000 -3.000000 12 0.000000 -7.000000 13 0.000000 -3.000000 14 0.000000 -6.000000 15 0.000000 -2.000000
ÓÉÒÔÉϽá¹û¿ÉÒÔÇå³þµÄ¿´µ½Óɸ÷²Ö¿âµ½¸÷¿Í»§´¦µÄ»õÎïµ÷ÔËÊýÁ¿£¬Óɴ˵óöµÄ·ûºÏÌõ¼þµÄ×î¼ÑÔË»õ·½°¸£¬¶øÊ¹ÔË·Ñ×îµÍ£¬×îµÍΪ664¡£
¶þ¡¢ÔËÊ乿»®
ÖØÇìÓÐÈý¼Òµç×Ó³§·Ö±ðÊÇÐÂÆÕ,¡ÓîºÍºã»ª,Éú²úµÄ±Ê¼Ç±¾µçÄÔ½«ÒªÔËÏò±±¾©,Ìì½ò,¹ã¶«,ÉϺ£Ëĸö³ÇÊÐÏúÊÛ,Æä²úÁ¿ºÍÏúÊÛÁ¿¼ûÏÂ±í£º£¨µ¥Î»£ºÍǫ̀£©
񡜧1-1
ÐÂÆÕ Â¡Óî ºã»ª ÏúÁ¿ ±±¾© 6 4 8 15 Ìì½ò 2 9 8 17 ¹ã¶« 6 5 1 22 ÉϺ£ 7 3 5 12 ²úÁ¿ 30 25 21 - ÎÊ£ºÄÄÖÖÏúÊÛ·½°¸½«»áÈ¡µÃ×îÉÙµÄÔËÊä·ÑÓÃ,·ÑÓÃΪ¶àÉÙ£¿
Õë¶Ô¸ÃÔËÊäÎÊÌâ,ΪÁË·½±ã¼ÆËã,¿ÉÒÔÉèÐÂÆÕ£¨A1£©,¡ÓA2£©ºÍºã»ª£¨A3£©·Ö±ðÏúÍù±±¾©£¨B1£©¡¢Ìì½ò£¨B2£©¡¢¹ã¶«£¨B3£©ºÍÉϺ££¨B4£©Ëĸö³ÇÊÐÏúÊÛÁ¿Îªx11¡¢x12¡¢x13¡¢x14¡¢x21¡¢x22¡¢x23¡¢x24¡¢x31¡¢x32¡¢x33¡¢x34.½¨Á¢ÒÔÏÂÄ£ÐÍ£º
񡜧1-2
B1 B2 B3 B4 ²úÁ¿ A1 A2 A3 ÏúÁ¿ 6 4 8 15 2 9 8 17 6 5 1 22 7 3 5 12 30 25 21 - Ä¿±ê£¨The objective£©×îÉÙ·ÑÓãº
34Min z??5x??i?1j?124cijxi31j?6x?8x11?2x12?6x13?7x14?4x21?9x22
3223?3x?8x?x33?5x34Ô¼ÊøÌõ¼þ£º
¹©Ó¦ÏÞÖÆ£¨The supply constrains£© Ö¸±êÔ¼Êø£¨The damand constrains£©
?x11?x12??x21?x22?x?x32?31LINGOÄ£ÐÍ£º model: sets: origin/1..3/:a; sale/1..4/:b;
? x11?x13?x14?30?? x12?x23?x24?25? x12??x33?x34?21? x?14?x21?x31?15?x22?x32?17?x23?x33?22 ?x24?x34?12routes(origin,sale):c,x; endsets data: a=30,25,21; b=15,17,22,12; c=6,2,6,7,4,9,5,3,8,8,1,5; enddata
[OBJ]min=@sum(routes:c*x); @for(origin(i):[SUP]
@sum(sale(j):x(i,j))<=a(i)); @for(sale(j):[DEM] @sum(origin(i):x(i,j))=b(j)); end lingo½á¹û£º
Global optimal solution found.
Objective value: 161.0000 Infeasibilities: 0.000000 Total solver iterations: 6 Variable Value Reduced Cost X( 1, 1) 2.000000 0.000000 X( 1, 2) 17.00000 0.000000 X( 1, 3) 1.000000 0.000000 X( 1, 4) 0.000000 2.000000 X( 2, 1) 13.00000 0.000000 X( 2, 2) 0.000000 9.000000 X( 2, 3) 0.000000 1.000000 X( 2, 4) 12.00000 0.000000 X( 3, 1) 0.000000 7.000000 X( 3, 2) 0.000000 11.00000 X( 3, 3) 21.00000 0.000000 X( 3, 4) 0.000000 5.000000 Row Slack or Surplus Dual Price OBJ 161.0000 -1.000000 SUP( 1) 10.00000 0.000000 SUP( 2) 0.000000 2.000000 SUP( 3) 0.000000 5.000000 DEM( 1) 0.000000 -6.000000 DEM( 2) 0.000000 -2.000000 DEM( 3) 0.000000 -6.000000
DEM( 4) 0.000000 -5.000000
´Ó¼ÆËã½á¹û¿ÉÒԵóö,ÐÂÆÕ£¨A1£©·Ö±ðÏúÍù±±¾©£¨B1£©¡¢Ìì½ò£¨B2£©¡¢¹ã¶«£¨B3£©ºÍÉϺ££¨B4£©Ëĸö³ÇÊÐÏúÊÛÁ¿Îª·Ö±ðΪ2Íǫ̀,17Íǫ̀,1Íǫ̀,0Íǫ̀,Ê£Óà10Íǫ̀£»Â¡ÓA2£©·Ö±ðÏúÍù±±¾©£¨B1£©¡¢Ìì½ò£¨B2£©¡¢¹ã¶«£¨B3£©ºÍÉϺ££¨B4£©Ëĸö³ÇÊÐÏúÊÛÁ¿Îª±ðΪ13Íǫ̀,0Íǫ̀,0Íǫ̀,12Íǫ̀,Ê£Óà0Íǫ̀£»ºã»ª£¨A3£©·Ö±ðÏúÍù±±¾©£¨B1£©¡¢Ìì½ò£¨B2£©¡¢¹ã¶«£¨B3£©ºÍÉϺ££¨B4£©Ëĸö³ÇÊÐÏúÊÛÁ¿Îª·Ö±ðΪ0Íǫ̀,0Íǫ̀,21Íǫ̀,0Íǫ̀,Ê£Óà0Íǫ̀£»×Ü·ÑÓÃΪ161¸öµ¥Î».
Èý¡¢ÕûÊý¹æ»®
ij¹«Ë¾´òËãÏòËüµÄ3¸öÓªÒµÇøÔöÉè6¸öÏúÊ۵꣬ÿ¸öÓªÒµÇøÖÁÉÙÔöÉèÒ»¸ö¡£´Ó¸÷Çø×¬È¡µÄÀûÈóÓëÔöÉèµÄÏúÊÛµê¸öÊýÓйأ¬ÆäÊý¾ÝÈçϱíËùʾ¡£ÊÔÇó¸÷ÇøÓ¦·ÖÅ伸¸öÔöÉèµÄÏúÊ۵꣬²ÅÄÜʹ×ÜÀûÈó×î´ó¡£
ÏúÊÛµãÔö¼ÓÊý AÇøÀûÈó/ÍòÔª BÇøÀûÈó/ÍòÔª CÇøÀûÈó/ÍòÔª 0 100 200 150 1 200 210 160 2 280 220 170 3 330 225 180 4 340 230 200 ÒªÉèÖü¯ºÏzone/A,B,C/£¬±íʾÈý¸öµØÇø¡£ÒòΪ»ñµÃµÄÀûÈóÓëµØÇøºÍ¸÷µØµÄÏúÊÛµãÔö¼ÓÊý¾ùÏà¹Ø£¬ËùÒÔ¿ÉÒÔ·ÂÕÕÔËÊäÄ£ÐÍ£¬ÓÃnumber/1..4/±íʾÿ¸öµØÇø¿É
Ñ¡µÄÏúÊÛµãÔö¼ÓÊý£¬È»ºóÓÃÒ»¸öÅÉÉú¼¯links(zone,number):c,profit£¬¶¨Òå
?1£¬ÔÚiµØÇøÐÂÔöcij???0£¬ÆäËûj¸öÏúÊÛµã
profit(i,j)ΪÔÚiµØÇøÐÂÔöj¸öÏúÊÛµãÄÜ»ñµÃµÄÀûÈó¡£ ¿Éд³öÔ¼ÊøÌõ¼þΪ£º
???cij?1£¬i?1,2,3?j?1? cij?0»ò1??34???cijj?6?i?1j?1?4ËùÇóº¯ÊýΪmax=@sum(links:c*profit); Lingo³ÌÐòÈçÏ£º model: