¡¶¼ÆËã»úͼÐÎѧ¡·Á·Ï°²âÊÔÌâ¼°²Î¿¼´ð°¸ ÏÂÔØ±¾ÎÄ

ΪÌá¸ß»æÖÆÐ§ÂÊ£¬ReevesÌá³öÁËÒ»¸öÕë¶ÔÁ£×ÓϵͳµÄ»æÖÆËã·¨£¬¸ÃËã·¨Ö÷Òª»ùÓÚÒÔÏÂÁ½¸ö¼ÙÉ裺

1) ÓÃÁ£×Óϵͳ±íʾµÄ×ÔÈ»¾°Îï²»ÓëÈκμ¸ºÎÄ£ÐÍÏཻ£¬Òò¶øÁ£×ÓϵͳµÄ»æÖÆºÍÆäËü¾°ÎïµÄ»æÖƿɷֱð½øÐС£¿¼Âǵ½×ÔÈ»¾°ÎïºÍÆäËü¾°ÎïÖ®¼ä¿ÉÄÜÓÐÕÚµ²¹ØÏµ£¬ÎÒÃÇ¿ÉÔ¤ÏȽ«³¡¾°»®·ÖΪ×Ó³¡¾°£¬¸ù¾Ý×Ó³¡¾°µÄǰºó¹ØÏµ£¬²ÉÓÃͼÏñºÏ³É¼¼ÊõµÃµ½×îÖÕͼÏñ¡£

2) ÿһÁ£×Ó¾ù¼ÙÉèΪһµã¹âÔ´£¬¾ù¶ÔËüËù¸²¸ÇµÄÏóËØÓйâÁÁ¶È¹±Ï×£¬Æä´óС¾ö¶¨ÓÚÁ£×ÓµÄÑÕÉ«ºÍ͸Ã÷¶È¡£

85£®Ë®²¨¶¯»­Öг£Óõķ½·¨ÓÐÄÄЩ£¿

Ë®²¨¶¯»­Öг£ÓõÄÒ»¸ö¼òµ¥¶øÓÐЧµÄ·½·¨ÊÇÓÃÕýÏÒ²¨£¬¶¯»­Ð§¹û¿Éͨ¹ý¶ÔÖîÈçÕñ·ù¡¢ÏàλµÈ²ÎÊýÀ´ÉèÖá£Ë®²¨Ò²¿ÉÒÔÓÃÆ½Ðв¨£¬Ò»ÖÖÈýά¿Õ¼äµÄÕýÏÒ²¨×´ÇúÃæÀ´ÔìÐÍ¡£

86.¿Õ¼ä±äÐηÖÄļ¸Àࣿ

¿Õ¼ä±äÐΰüÀ¨ÓëÎïÌå±íʾÓйصıäÐκÍÓëÎïÌå±íʾÎ޹صıäÐΡ£ 87. BarrÌá³öÁËÄÄЩËã×Ó£¿ÕâЩËã×ÓÓÐÄÄЩÓŵ㣿

BarrÌá³öµÄËã×ÓÓУºtwisting(ʹ³ÉÂÝÐýÐÎ)¡¢bending(ÍäÇú)¡¢tapering(½¥Ï¸)¡£ÕâЩËã×ÓµÄÓŵãÔÚÓÚ£º

1)ÍÆ¹ãÁË´«Í³µÄÔìÐÍÔËË㣬¿ÉÒÔÉú³ÉÐí¶à´«Í³ÔìÐÍ·½·¨ÄÑÒÔÉú³ÉµÄÐÎÌå¡£ 2)±äÐκóÎïÌåµÄ·¨ÏòÁ¿¿ÉÓÃÔ­ÎïÌåµÄ·¨ÏòÁ¿ºÍ±ä»»¾ØÕó½âÎöÇóµÃ¡£ 88 ¡£²ÉÓÃFFD¿é¶ÔÎïÌå±äÐÎÓÐÄÄЩ²½Ö裿 ²ÉÓÃFFD¿é¶ÔÎïÌå±äÐεIJ½ÖèÈçÏ£º

1)È·¶¨ÎïÌåµÄ¶¥µã(»ò¿ØÖƶ¥µã)ÔÚ²ÎÊý¿Õ¼äµÄλÖᣠ2)±äÐÎFFD¿é

3)È·¶¨¿Õ¼ä±äÐκóÎïÌå¶¥µãµÄλÖà 89£®.FFD·½·¨µÄÈõµã

FFDÊÇÒ»ÖÖÇ¿´óµÄ±äÐι¤¾ß£¬Ôڸ÷½·¨ÖУ¬Óû§Í¨¹ýÒÆ¶¯Íø¸ñ¿ØÖƶ¥µãÀ´¶ÔÎïÌå½øÐбäÐΡ£µ«ÓÉÓÚÍø¸ñ¿ØÖƶ¥µãµÄÒÆ¶¯Ö»ÊÇÎïÌå±äÐεÄijÖÖÏòµ¼£¬ÎïÌåµÄ±äÐβ¢²»¾«È·¸úËæFFD¿ØÖƶ¥µãµÄÒÆ¶¯¡£

90 .×ÔÓÉÇúÃæµÄ±íʾͨ³£ÓÐÄÄÁ½ÖÖ£¿

×ÔÓÉÇúÃæµÄ±íʾͨ³£ÓÐÁ½ÖÖ£ºÒ»ÖÖΪ²ÎÊýÇúÃæ£¬ÈçBezierÇúÃæ¡¢BÑùÌõÇúÃæ¡¢NURBSÇúÃæµÈ£»ÁíÒ»ÖÖΪÒþʽÇúÃæ¡£ 91.²ÉÓÃÔªÇòÔìÐ;ßÓÐÄÄЩÓŵ㣿

1)ËùÐèµÄÊý¾ÝÁ¿Í¨³£Òª±ÈÓöà±ßÐÎÔìÐÍÉÙ2ÖÁ3¸öÊýÁ¿¼¶¡£ÀýÈ磬ÓÃ500¸öÔªÇò¾Í¿ÉÒԽϺõرíÏÖÒ»¸öÈ˵ÄÔìÐÍ¡£

2)ºÜÊʺÏÓÚ²ÉÓÃCSGÄ£ÐÍÀ´ÃèÊö¡£

3)ºÜÊʺϱíʾ¿É±äÐεÄÎïÌ壬Òò¶ø¶ÔÈáÐÔÎïÌåµÄ¶¯»­·Ç³£ÓÐÓᣠ4)ºÜÊʺÏÓÚÈËÌå¡¢¶¯ÎïÆ÷¹ÙºÍÒºÌåµÄÔìÐÍ¡£ 5)Éú³ÉµÄÇúÃæÓÀÔ¶Êǹ⻬µÄ¡£

92¡¢¼ÆËã»úͼÐÎϵͳ°üº¬ÄÄЩÍⲿÉ豸£¿ ͼÐÎÊäÈëÉ豸£º¸ÅÄî¡¢ÌØµã ͼÐÎÏÔʾÉ豸£º¸ÅÄî¡¢½á¹¹Ô­Àí¡¢¹¤×÷·½Ê½¡¢Ìصã ͼÐλæÖÆÉ豸£º¸ÅÄî¡¢ÌØµã

ËÄ¡¢×ÛºÏÌ⣺£¨Ã¿Ìâ12·Ö£©

4¡¢ ÓÃBresenhamËã·¨Éú³ÉÍÖÔ² F(x ,y) 2?a 2y2 ?a2Ò» ʱ£¬Èô£º ?b2xb2 ? 0?d1?b2(2xi?3),d1?0d1??22?d1?b(2xi?3)?a(?2yi?2),d1?0

ÔÚµÚÒ»ÏóÏÞÉϰ벿·ÖÎó²îÏîµÝÍÆ¹«Ê½Îª£º ϰ벿·ÖµÄµÝÍÆ¹«Ê½Îª£º

?d2?b2(2xi?2)?a2(?2yi?3)£¬dd2 ??2d?a(?2yi?3),d2?02?2?0

µ± b2 (xi? 1)? a2( yi? 0.5)ʱ£¬ËµÃ÷´ÓÍÖÔ²µÄÉϰ벿·ÖתÈëϰ벿·Ö¡£ Çëд³ö»­³öÕû¸öÍÖÔ²µÄËã·¨²½Öè¡£

´ð£ºËã·¨²½ÖèÈçÏ£º

1£©.ÊäÈëÍÖÔ²µÄ³¤°ëÖáaºÍ¶Ì°ëÖáb¡£

2£©.¼ÆËã³õʼֵd=b2+a2(-b+0.25)¡¢x=0¡¢y=b¡£

3£©.»æÖƵã(x,y)¼°ÆäÔÚËÄ·ÖÏóÏÞÉϵÄÁíÍâÈý¸ö¶Ô³Æµã¡£ 4£©.ÅжÏdµÄ·ûºÅ¡£Èôd¡Ü0£¬ÔòÏȽ«d¸üÐÂΪd+b2(2x+3)£¬ÔÙ½«(x,y)¸üÐÂΪ(x+1,y)£»·ñÔòÏȽ«d¸üÐÂΪd+b2(2x+3)+a2(-2y+2)£¬ÔÙ½«(x,y)¸üÐÂΪ(x+1,y-1)¡£ 5£©.µ±b2(x+1)

d?b2(x?0.5)2?a2(y?1)2?a2b27£©.»æÖƵã(x,y)¼°ÆäÔÚËÄ·ÖÏóÏÞÉϵÄÁíÍâÈý¸ö¶Ô³Æµã¡£

8£©.ÅжÏdµÄ·ûºÅ¡£Èôd¡Ü0£¬ÔòÏȽ«d¸üÐÂΪb2(2xi+2)+a2(-2yi+3)£¬ÔÙ½«(x,y)¸üÐÂΪ(x+1,y-1)£»·ñÔòÏȽ«d¸üÐÂΪd+a2(-2yi+3)£¬ÔÙ½«(x,y)¸üÐÂΪ(x,y-1)¡£

9£©.µ±y>0ʱ£¬Öظ´²½Öè7ºÍ8¡£·ñÔò½áÊø¡£

ii5¡¢ ÒÑÖªBernstain»ùº¯ÊýΪBi,n(t)?Cn£¬t(1?t)n?i£¬Æä¶¥µãÐòÁÐΪPi£¨i=0,1,¡­.,n£©

Çëд³öBesizerÇúÏߵIJÎÊý·½³Ì¡£ÁíÍ⣬ÇëÖ¤Ã÷ÒÔÏÂÒ»½×µ¼Êý£º

Bi?,n(t)?n(Bi?1,n?1(t)?Bi,n?1(t))

nPiBi,n(t) t?[0,1]½â£ºBesizerÇúÏߵIJÎÊý·½³ÌΪ£º P(t)?i?0

n!

?,n(t)?Bk(i?ti?1(1?t)n?i?(n?i)(1?t)n?i?1?ti)i!(n?i)!

n(n?1)!i?1(n?1)?(i?1)??t?(1?t) (i?1)!((n?1)?(i?1))!

n(n?1)!?ti?(1?t)(n?1)?i ?i!((n?1)?i)!

?n(Bi?1,n?1(t)?Bi,n?1(t))

6¡¢ ÊÔÖ¤Ã÷n´ÎBesizerÇúÏßÔÚÆðʼµã´¦ÇÐÏßÂäÔÚP0P1Á¬Ïß·½ÏòÉÏ£¬ÖÕÖ¹µãÇÐÏßÂäÔÚ

Pn-1PnÁ¬Ïß·½ÏòÉÏ¡£

?

Ö¤Ã÷£º?Bi?,n(t)?n(Bi?1,n?1(t)?Bi,n?1(t))

ÇÒÒòΪ£ºP?(t)?n?Pi(Bi?1,n?1(t)?Bi,n?1(t))i?0n?n((P1?P0)B0,n?1(t)?(P2?P1)B1,n?1(t)???(Pn?Pn?1)Bn?1,n?1(t))?n?(Pi?Pi?1)Bi?1,n?1(t)i?1nËùÒÔ£¬ÓУºp?(0)?n(P1?P0)p?(1)?n(Pn?Pn?1) ¹Ê¿ÉÖª£ºn´ÎBesizerÇúÏßÔÚÆðʼµã´¦ÇÐÏßÂäÔÚP0P1Á¬Ïß·½ÏòÉÏ£¬ÖÕÖ¹µãÇÐÏßÂäÔÚPn-1PnÁ¬Ïß·½ÏòÉÏ¡£

4¡¢ÊÔ¸ù¾Ý¸ø³öµÄ¶à±ßÐμ°µãP£¬ÀûÓñêºÅ·¨£¨¸Ä½øµÄת½Ç·¨£©È·¶¨µãPÓë¶à±ßÐÎÇøÓòµÄ¹ØÏµ£¬ÒÑ֪ÿÌõ±ßABµÄ±êºÅ¦¤¦ÁABµÄ¼ÆË㹫ʽΪ£º

??AB???B????A????B????A??4??????B????A??4????AC???CB?1???B????A??1??B????A??2

??B????A???2??B????A???2A D

½â£» £¨1£©¡¢ÒÔPΪԭµã£¬»®³öËĸöÏóÏÞ£¬Èçͼ B £¨2£©¡¢¼ÆËã¸÷±ßµÄ±êºÅ£º 3·Ö

¦Á(B)- ¦Á(A)=1 ¦¤¦Á=1 ¦Á(C)- ¦Á(B)=0 ¦¤¦Á=0

C ¦Á(D)- ¦Á(C)=0 ¦¤¦Á=0

¦Á(E)- ¦Á(D) =--2 È¡µãD¡¯ ¦¤¦Á=¦¤DD¡¯+¦¤D¡¯E=1+0-3+4=2 ¦Á(A)- ¦Á(E)=1 ¦¤¦Á=1

(3) W=1+0+0+2+1=4 ¡àPµãÔÚ¶à±ßÐÎÇøÓòÄÚ²¿

5¡¢ÒÑÖªÖðµã±È½Ï·¨ÔÚµÚ¢ñÏóÏÞÉú³ÉÖ±ÏߵļÆËãʽΪ£º

P ?Xi?1?Xi?1?(1)Fi?0ʱ£¬×ßX·½ÏòÒ»²½£¬¼´?Yi?Yi?F?F?Y

iA?i?1?Xi?1?Xi?(1)Fi?0ʱ£¬×ßY·½ÏòÒ»²½£¬¼´?Yi?Yi?1?F?F?X

iA?i?1ÊÔÍÆµ¼Öðµã±È½Ï·¨ÔÚµÚ¢òÏóÏÞÉú³ÉÖ±ÏߵļÆËãʽ¡£

½â£ºiΪÒÑÑ¡¶¨µÄµã(Xtg??YAXAi£¬ Xi)

tg??YiXi

Á

Fi?tg??tg??YiXi?YAXA?YiXA?XiYAXiXA

¡ß?Xi?.? XA ? >0 Ôò¿ÉÉè: Fi?YiXA?XiYA