电力变压器保护毕业设计 下载本文

电力变压器保护设计

第二章 电力变压器保护的类型

2.1 电力变压器的保护类型

针对电力变压器的上述故障类型及不正常运行状态,应对变压器装设相应的继电保护装置。其任务就是反应上述故障或异常运行状态,并通过断路器切除故障变压器,或发出信号告知运行人员采取措施消除异常运行状态。同时,变压器保护还应能作相邻电气元件的后备保护故根据DL400--91《继电保护和安全自动装置技术规程》的规定,电力变压器应装设如下保护:瓦斯保护、纵连差动保护、电流速断保护、过电流保护、零序电流保护、过负荷保护、过励磁保护 2.1.1 变压器瓦斯保护

变压器瓦斯保护是利用安装在变压器油箱与油枕间的瓦斯继电器来判别变压器内部故障;当变压器内部发生故障时,电弧使油及绝缘物分解产生气体。故障轻微时,油箱内气体缓慢的产生,气体上升聚集在继电器里,使油面下降,继电器动作,接点闭合,这时让其作用于信号,称为轻瓦斯保护;故障严重时,油箱内产生大量的气体,在该气体作用下形成强烈的油流,冲击继电器,使继电器动作,接点闭合,这时作用于跳闸并发信,称为重瓦斯保护。 2.1.2 变压器纵联差动保护

1)构成变压器纵联差动保护的基本原则

所谓变压器的纵联差动保护,是指由变压器的一次和二次电流的数值和相位进行比较而构成的保护。纵联差动保护装置,一般用来保护变压器线圈及引出线上发生的相间短路和大电流接地系统中的单相接地短路。对于变压器线圈的匝间短路等内部故障,通常只作后备保护。

纵联差动保护装置由变压器两侧的电流互感器和继电器等组成,两个电流互感器串联形成环路,电流继电器并接在环路上。因此,电流继电器的电流等于两侧电流互感器二次侧电流之差。在正常情况下或保护范围外发生故障时,两侧电流互感器二次侧电流大小相等,相位相同,因此流经继电器的差电流为零,但如果在保护区内发生短路故障,流经继电器的差电流不再为零,因此继电器将动作,

3

电力变压器保护设计

使断路器跳闸,从而起到保护作用。

变压器纵差保护是按照循环电流原理构成的,变压器纵差保护的原理要求变压器在正常运行和纵差保护区(纵差保护区为电流互感器TA1、TA2之间的范围)外故障时,流入差动继电器中的电流为零,保证纵差保护不动作。但由于变压器高压侧和低压侧的额定电流不同,因此,为了保证纵差保护的正确工作,就须适当选择两侧电流互感器的变比,使得正常运行和外部故障时,两个电流相等。

2)不平衡电流产生的原因和消除方法 1.不平衡电流产生的原因:

不平衡电流产生的原因主要有:?变压器的励磁涌流。?变压器两侧电流相位不同。?计算变比与实际变比的不同。?两侧电流互感器型号不同。?变压器带负荷调整分接头。

2.对差动保护的影响和消除方法: ?由变压器励磁涌流所产生的不平衡电流

变压器的励磁涌流仅流经变压器的某一侧,因此,它通过电流互感器反应到差动回落中不能被平衡,在正常运行情况下,此电流很小,一般不超过额定电流的2--10。在外部故障时,由于电压降低,励磁涌流减小,它的影响就很小。但是在变压器空载投入和外部故障切除恢复时,由于变压器的铁芯严重饱和,励磁电流将剧烈增大,这时出现数值很大的励磁电流,可达额定电流的5—10倍。(通常称为励磁涌流)励磁涌流中含有大量的非周期分量和高次谐波分量(以二次谐波为主)它不是正弦波。而是尖顶波,往往使涌流偏于时间轴的一侧。励磁涌流的大小和衰减速度、合闸瞬时外加电压的相位铁芯中剩磁的大小和方向、电流容量的大小、回路的阻抗、变压器的容量和铁芯性质等有关系。例如,正好在电压瞬时值为最大时合闸,就不会出现励磁涌流,而只有正常时的励磁电流。对于三相变压器而言,无论在任何瞬间合闸,至少有两相要出现程度不同的励磁涌流。 变压器差动保护中减小励磁涌流影响的方法:防止励磁涌流的影响,采用BCH型具有速饱和变流器的继电器是国内目前广泛采用的一种方法。当外部故障时,所含非周期分量的最大不平衡电流能使速饱和变流器的铁芯很快单方面的饱和,致使不平衡电流难以传变到差动继电器的差动线圈上,保证差动保护不会误

4

电力变压器保护设计

动。内部故障时,速饱和变流器的一次线圈中虽然也有非周期分量,但它的衰减速度相当快,一般2个周期衰减完毕,以后变流器中通过的全是周期性的短路电流,所以继电器能灵敏动作。鉴别短路电流和励磁涌流波形的差别,它是利用整流后的波形在动作整定值下存在时间长短来判定是内部故障还是励磁涌流。利用二次谐波制动,差动保护在变压器空载投入和外部故障切除电压恢复时,利用二次谐波进行制动,内部故障时,利用比例制动回路躲过不平衡电流。 ?由变压器两侧电流相位不同而产生的不平衡电流

由于变压器通常采用Y,d11的接线方式,因此,其两侧电流的相位相差30度,即使变压器两侧的电流大小相等,反映到差动继电器中也回出现不平衡电流。为了消除这种不平衡电流的影响,可用相位补偿法,通常将变压器的星形侧的三个电流互感器接成三角形,而将变压器三角形侧的三个电流互感器接成星形,并适当考虑联接方式后可把二次电流的相位校正过来。相位补偿后,在互感器接成三角形侧的差动一臂中,电流又增大了1.732倍。为了保证在正常运行及外部故障情况下差动回路中没有电流,就必须将该侧电流互感器的变比加大1.732倍(在微机保护中,通过程序中的平衡系数来平衡),以减小二次电流,使之与另一侧的电流相等。

?由计算变比与实际变比不同而产生的不平衡电流

由于变压器两侧的电流互感器都是根据产品目录选取标准的变比,而变压器的变比也是一定的,因此,两侧互感器的变比与变压器的变比很难满足要求,此时差动回路中将有电流流过。在实际选择互感器时,通常是根据互感器的定型产品来确定一个比较接近的变比。

为了消除此不平衡电流,常采用具有速饱和铁芯的差动继电器利用它的平衡线圈来消除此差电流的影响。一般平衡线圈接于保护臂电流小的一侧,因为平衡线圈和差动线圈共同绕在继电器的中间磁柱上。适当选择平衡线圈的平衡匝数,使它产生懂得磁势与差流在差动线圈中产生的磁势相抵消。因此在铁芯中没有磁通,继电器不可能动作。但实际上平衡线圈只能按整匝数进行选择,所以还会有一残余的不平衡电流存在,在整定计算时应加以考虑。 ?由两侧电流型号不同而产生的不平衡电流

由于变压器两侧电流互感器的型号不同,它们的饱和特性、励磁电流(归算

5

电力变压器保护设计

到同一侧)也就不同,因此在外部故障时差动回路中所产生的不平衡电流就较大。此时应采用电流互感器的同型系数,并适当提高差动保护的动作电流。 ?由变压器带负荷调整分接头而产生的不平衡电流

带负荷调整分接头是电力系统中采用带负荷调压的变压器来调整电压的常用方法,实际上改变分接头就是改变变压器的变比,假如差动保护已按某一变比调整好(如利用平衡线圈),则当分接头改变时就会产生新的不平衡电流流入差动回路,此时不可能再用重新选择平衡线圈的方法来消除这个不平衡电流,为了避免不平衡电流的影响,在整定保护的动作电流时应予以考虑,通常是提高保护的动作整定值。

综上所述,由变压器两侧电流相位不同和计算变比与实际变比的不同产生的不平衡电流可适当地选择电流互感器二次线圈的接法和变比、以及采用平衡线圈的方法,可使其降到最小。但由励磁涌流、互感器的型号不同和带负荷调整分接头而产生的不平衡电流是不可能消除的。因此变压器的纵差动保护必须躲过这不平衡电流的影响。不平衡电流越小,保护的灵敏度就越高,从而保证变压器安全可靠运行。 2.1.3电流速断保护

1)电流速断保护的原理分析

电流速断保护按被保护设备的短路电流整定,当短路电流超过整定值时,侧保护装置 动作,断路器跳闸,电流速断保护一般没有时限,不能保护线路全长(为避免失去选 择性),即存在保护的死区.为克服此缺陷,常采用略带时限的电流速断保护以保护 线路全长.时限速断的保护范围不仅包括线路全长,而深入到相邻线路的无时限保护 的一部分,其动作时限比相邻线路的无时限保护大一个级差. 电流速断保护的特点 接线简单,动作可靠,切除故障快,但不能保护线路全长,保护范围受到系统运 行方式变化的影响较大。 速断保护是一种短路保护, 为了使速断保护动作具有选择性, 一般电力系统中速断保护其实都带有一定的时限,这就是限时速断,离负荷越近的开 关保护时限设置得越短,末端的开关时限可以设置为零,这就成速断保护,这样就能 保证在短路故障发生时近故障点的开关先跳闸,避免越级跳闸。定时限过流保护的目 的是保护回路不过载,与限时速断保护的区别在于整定的电流相对较小,而时限相对 较长。

6