河南省信阳市2019年中考数学一模试卷(Word版,含答案解析) 下载本文

≈0.018,sin80°≈0.98,≈1.414)

(1)此时小强头部E点与地面DK相距多少?

(2)小强希望他的头部E恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少?

20.如图,在平面直角坐标系中,点O为坐标原点,菱形OABC的顶点A在x轴的正半轴上,顶点C的坐标为(1,

).

(1)求图象过点B的反比例函数的解析式; (2)求图象过点A,B的一次函数的解析式;

(3)在第一象限内,当以上所求一次函数的图象在所求反比例函数的图象下方时,请直接写出自变量x的取值范围.

21.某物流公司承接A、B两种货物运输业务,已知5月份A货物运费单价为50元/吨,B货物运费单价为30元/吨,共收取运费9500元;6月份由于油价上涨,运费单价上涨为:A货物70元/吨,B货物40元/吨;该物流公司6月承接的A种货物和B种数量与5月份相同,6月份共收取运费13000元.

(1)该物流公司5月份运输两种货物各多少吨?

(2)该物流公司预计7月份运输这两种货物330吨,且A货物的数量不大于B货物的2倍,在运费单价与6月份相同的情况下,该物流公司7月份最多将收到多少运输费?

22.如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.

(1)观察猜想:

图1中,线段PM与PN的数量关系是 ,位置关系是 ; (2)探究证明:

把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由; (3)拓展延伸:

把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.

23.如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C三点,点A的坐标是(3,0),点C的坐标是(0,﹣3),动点P在抛物线上.

(1)b= ,c= ,点B的坐标为 ;(直接填写结果)

(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;

(3)过动点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.

2019年河南省信阳市淮滨县中考数学一模试卷

参考答案与试题解析

一、选择题(每小题3分,共30分)

1.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可. 【解答】解:﹣5的相反数是5, 故选:B.

【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.

2.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.

【解答】解:0.00000032=3.2×10﹣7; 故选:C.

【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定. 3.【分析】首先判断出该几何体,然后计算其面积即可.

【解答】解:观察三视图知:该几何体为圆柱,高为2,底面直径为1, 侧面积为:πdh=2×π=2π,

∵是按1:10的比例画出的一个几何体的三视图, ∴原几何体的侧面积=100×2π=200π, 故选:D.

【点评】本题考查了由三视图判断几何体及圆柱的计算,解题的关键是首先判断出该几何体. 4.【分析】根据平均数,可得x的值,根据众数的定义、中位数的定义、方差的定义,可得答案. 【解答】解:由5,7,x,3,4,6.已知他们平均每人捐5本,得 x=5.

众数是5,中位数是5, 方差

=,

故选:D.

【点评】本题考查了方差,利用方差的公式计算是解题关键. 5.【分析】直接利用同类二次根式的定义分别化简二次根式求出答案. 【解答】解:A、B、C、D、

==2=

,与,与=

=3

,与

不是同类二次根式,故此选项错误;

,是同类二次根式,故此选项正确; 不是同类二次根式,故此选项错误; ,与

不是同类二次根式,故此选项错误;

故选:B.

【点评】此题主要考查了同类二次根式,正确化简二次根式是解题关键.

6.【分析】要求函数的解析式只要求出B点的坐标就可以,过点A,B作AC⊥x轴,BD⊥x轴,分别于C,D.根据条件得到△ACO∽△ODB,得到:

=2,然后用待定系数法即可.

【解答】解:过点A,B作AC⊥x轴,BD⊥x轴,分别于C,D. 设点A的坐标是(m,n),则AC=n,OC=m, ∵∠AOB=90°, ∴∠AOC+∠BOD=90°, ∵∠DBO+∠BOD=90°, ∴∠DBO=∠AOC, ∵∠BDO=∠ACO=90°, ∴△BDO∽△OCA, ∴

∵OB=2OA, ∴BD=2m,OD=2n,

因为点A在反比例函数y=的图象上,则mn=1,

∵点B在反比例函数y=的图象上,B点的坐标是(﹣2n,2m), ∴k=﹣2n?2m=﹣4mn=﹣4. 故选:A.