21.(6分)已知△ABC,
(1)用无刻度的直尺和圆规作△ABD,使∠ADB=∠ACB.且△ABD的面积为△ABC面积的一半,只需要画出一个△ABD即可(作图不必写作法,但要保留作图痕迹) (2)在△ABC中,若∠ACB=45°,AB=4,则△ABC面积的最大值是
22.(8分)如图,CD是Rt△ABC斜边AB上的中线,过点D垂直于AB的直线交BC于E,交AC延长线于F.
求证:(1)△ADF∽△EDB; (2)CD2=DE?DF.
5
23.(6分)数学兴趣小组的同学们,想利用自己所学的数学知识测量学校旗杆的高度:下午活动时间,兴趣小组的同学们来到操场,发现旗杆的影子有一部分落在了墙上(如图所示).同学们按照以下步骤进行测量:测得小明的身高1.65米,此时其影长为2.5米;在同一时刻测量旗杆影子落在地面上的影长BC为9米,留在墙上的影高CD为2米,请你帮助兴趣小组的同学们计算旗杆的高度.
24.(8分)如图,四边形ABCD内接于⊙O,∠BAD=90°,AD、BC的延长线交于点F,点E在CF上,且∠DEC=∠BAC, (1)求证:DE是⊙O的切线;
(2)当AB=AC时,若CE=2,EF=3,求⊙O的半径.
6
25.(6分)某农户承包荒山种植某产品种蜜柚.已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销量y(千克)与销售单价x(元/千克)之间的函数关系如图所示.
(1)求y与x的函数关系式,并写出x的取值范围;
(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?
26.(10分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:
售价x(元/千克) 销售量y(千克)(1)求y与x之间的函数表达式;
(2)设商品每天的总利润为W(元),则当售价x定为多少元时,厂商每天能获得最大利润?最大利润是多少?
(3)如果超市要获得每天不低于1350元的利润,且符合超市自己的规定,那么该商品每千克售价的取值范围是多少?请说明理由.
7
50 100 60 80 70 60
27.(12分)如图,已知AB是圆O的直径,F是圆O上一点,∠BAF的平分线交⊙O于点E,交⊙O的切线BC于点C,过点E作ED⊥AF,交AF的延长线于点D. (1)求证:DE是⊙O的切线; (2)若DE=3,CE=2, ①求
的值;
②若点G为AE上一点,求OG+EG最小值.
8