3、 材料特性
两种介质之间的边界
具有有限电导的导体
§2.3 背景如何影响结构
所谓背景是指几何模型周围没有被任何物体占据的空间。任何和背景有关联的物体表面将被自动地定义为理想的电边界(Perfect E)并且命名为外部(outer)边界条件。你可以把你的几何结构想象为外面有一层很薄而且是理想导体的材料。
如果有必要,你可以改变暴露于背景材料的表面性质,使其性质与理想的电边界不同。为了模拟有耗表面,你可以重新定义这个边界为有限电导(Finite Conductivity )或阻抗边界(Impedance boundary)。有限电导边界可以是一种电导率和导磁率均为频率函数的有耗材料。阻抗边界默认在所有频率都具有相同的实数或复数值。为了模拟一个允许波进入空间辐射无限远的表面,重新定义暴露于背景材料的表面为辐射边界(Radiation Boundary)。
背景能够影响你怎样给材料赋值。例如,你要仿真一个充满空气的矩形波导,你可以创建一个具有波导形状特性为空气的简单物体。波导表面自动被假定为良导体而且给出外部(outer)边界条件,或者你也可以把它变成有损导体。
§2.4 边界条件的技术定义
激励(Excitation)——激励端口是一种允许能量进入或导出几何结构的边界条件。
理想电边界(Perfect E)——Perfect E是一种理想电导体或简称为理想导体。这种边界条件的电场(E-Field)垂直于表面。有两种边界被自动地赋值为理想电边界。
1、 任何与背景相关联的物体表面将被自动地定义为理想电边界并且命名为outer的外部边界条件。
2、 任何材料被赋值为PEC(理想电导体)的物体的表面被自动的赋值为理想电边界并命为smetal边界。
理想磁边界(Perfect H)——Perfect H是一种理想的磁边界。边界面上的电场方向与表面相切。
自然边界(Natural)——当理想电边界与理想磁边界出现交叠时,理想磁边界也被称为Natural边界。理想磁边界与理想电边界交叠的部分将去掉理想电边界特性,恢复所选择区域为它以前的原始材料特性。它不会影响任何材料的赋值。例如,可以用它来模拟地平面上的同轴线馈源图案。
有限电导率(Finite Conductivity)边界——有限电导率边界将使你把物体表面定义有耗(非理想)的导体。它是非理想的电导体边界条件。并且可类比为有耗金属材料的定义。为了模拟有耗表面,你应提供以西门子/米(Siemens/meter)为单位的损耗参数以及导磁率参数。计算的损耗是频率的函数。它仅能用于良导体损耗的计算。其中电场切线分量等于Zs(n xHtan)。表面电阻(Zs)就等于 (1+j)/(ds)。其中,
d 是趋肤深度;导体的趋肤深度为
w 是激励电磁波的频率.
s 是导体的电导率 μ 是导体的导磁率
阻抗边界(Impedance)——一个用解析公式计算场行为和损耗的电阻性表面。表面的切向电场等于Zs(n xHtan)。表面的阻抗等于Rs + jXs。其中,
Rs是以ohms/square为单位的电阻
Xs 是以ohms/square为单位的电抗
分层阻抗(Layered Impedance)边界——在结构中多层薄层可以模拟为阻抗表面。使用分层阻抗边界条件进一步的信息可以在在线帮助中寻找。
集总RLC(Lumped RLC)边界 ——一组并联的电阻、电感和电容组成的表面。这种仿真类似于阻抗边界,只是软件利用用户提供的R、L和C值计算出以ohms/square为单位的阻抗值。
无限地平面(Infinite Ground Plane)——通常,地面可以看成是无限的、理想电壁、有限电导率或者是阻抗的边界条件。如果结构中使用了辐射边界,地面的作用是对远区场能量的屏蔽物,防止波穿过地平面传播。为了模拟无限大地平面的效果,在我们定义理想电边界、有限电导或阻抗边界条件时,在无限大地平面的框子内打勾。
辐射边界(Radiation)——辐射边界也被称为吸收边界。辐射边界使你能够模拟开放的表面。即,波能够朝着辐射边界的方向辐射出去。系统在辐射边界处吸收电磁波,本质上就可把边界看成是延伸到空间无限远处。辐射边界可以是任意形状并且靠近结构。这就排除了对球形边界的需要。对包含辐射边界的结构,计算的S参数包含辐射损耗。当结构中包含辐射边界时,远区场计算作为仿真的一部分被完成。
§2.5 激励技术综述
端口是唯一一种允许能量进入和流出几何结构的边界类型。你可以把端口赋值给一个两维物体或三维物体的表面。在几何结构中三维全波电磁场被计算之前,必须确定在每一个端口激励场的模式。Ansoft HFSS 使用任意的端口解算器计算自然的场模式或与端口截面相同的传输线存在的模式。导致两维场模式作为全三维问题的边界条件。
Ansoft HFSS默认所有的几何结构都被完全装入一个导电的屏蔽层,没有能量穿过这个屏蔽层。当你应用波端口(Wave Ports)于你的几何结构时,能量通过这个端口进入和离开这个屏蔽层。
作为波端口的替代品,你可以在几何结构内应用集中参数端口(Lumped Ports)。集中参数端口在模拟结构内部的端口时非常有用。
§2.5.1 波端口(Wave Ports)
端口解算器假定你定义的波端口连接到一个半无限长的波导,该波导具有与端口相同的截面和材料。每一个端口都是独立地激励并且在端口中每一个入射模式的平均功率为1瓦。波端口计算特性阻抗、复传播常数和S参数。
波动方程
在波导中行波的场模式可以通过求解Maxwell方程获得。下面的由Maxwell方程推出的方程使用两维解算器求解。
其中:
是谐振电场的矢量表达式;
是自由空间的波数;
是复数相对导磁率;
是复数相对介电常数。
求解这个方程,两维解算器得到一个矢量解形式的激励场模式。这些矢量解与和无关,只要在矢量解后面乘上它们就变成了行波。
另外,我们注意到激励场模式的计算只能在一个频率。在每一个感兴趣的频率,计算出的激励场模式可能会不一样。
§2.5.2 模式(Modes)
对于给定横截面的波导或传输线,特定频率下有一系列的场模式满足麦克斯维方程组。这些模式的线性叠加都可以在波导中存在。
模式转换
某些情况下,由于几何结构的作用像一个模式变换器,计算中包括高阶模式的影响是必须的。例如,当模式1(主模)从某一结构的一个端口(经过该结构)转换到另外一个端口的模式2时,我们有必要得到模式2下的S参数。
模式,反射和传播
在单一模式的信号激励下,三维场的解算结果中仍然可能包含由于高频结构不均匀引起的高次模反射。如果这些高次模反射回激励源端口,或者传输到下一个端口,那么和这些高次模相关的S参数就必须被考虑。如果高次模在到达任何端口前,得到衰减(这些衰减由金属损耗或者传播常数中的衰减部分所造成),那么我们就可以不考虑这些高次模的S参数。
模式和频率
一般来说,和每种模式相关的场模式也许会随频率的改变而变化。然而,传播常数和特性阻抗总是随频率变化的。因此,需要频扫时,在每一个频率点,都应有相应的解算。通常,随着频率的增加,高次模出现的可能性也相应的增加。
模式和S参数
当每个端口的定义都正确时,仿真中包括的每个模式,在端口处都是完全匹配的。因此,每个模式的S参数和波端口,将会根据不同频率下的特性阻抗进行归一化。这种类型的S参数叫做广义的S参数。
实验测量,例如矢量网络分析仪,以及电路仿真器中使用的特性阻抗是常数(这使得端口在各个频率下不是完全匹配)。