strain reversal in structural members during the cooling phase of a fire [J]. Journal of Constructional Steel Research, 1996, 37(2): 115-135.
[122] Bailey C G, Burgess I W and Plank R J. Analyses of the effects of cooling and fire spread on steel-framed buildings [J]. Fire Safety Journal, 1996, 26(4): 273-293.
[123] 李国强, 郭士雄. 受火约束钢梁在升温段和降温段行为的理论分析(I) [J]. 防灾减灾工程学报, 2006, 26(3): 241-250.
[124] 郭士雄, 李国强. 受火约束钢梁在升温段和降温段行为的理论分析(II) [J]. 防灾减灾工程学报, 2006, 26(4): 359-368. 参考文献 192
[125] Wang P J, Li G Q and Guo S X. Effects of the cooling phase of a fire on steel structures [J]. Fire Safety Journal, 2008, 43(6): 451-458.
[126] Lien K H, Chiou Y J, Wang R Z and Hsiao P A. Nonlinear behavior of steel structures considering the cooling phase of a fire [J]. Journal of Constructional Steel Research, 2009, 65(8-9): 1776-1786.
[127] Li G Q, Guo S X. Experiment on restrained steel beams subjected to heating and cooling [J]. Journal of Constructional Steel Research, 2008, 64(3): 268-274.
[128] Yang H, Han L H and Wang Y C. Effects of heating and loading histories on post-fire cooling behaviour of concrete-filled steel tubular columns [J]. Journal of Constructional Steel Research, 2008, 64(5): 556-570.
[129] Huo J S, Huang G W and Xiao Y. Effects of sustained axial load and cooling phase on post-fire behaviour of concrete-filled steel tubular stub columns [J]. Journal of Constructional Steel Research, 2009, 65(8-9): 1664-1676.
[130] ISO-834. Fire-resistance tests-elements of building construction [S]. International Standard ISO834: Amendment 1, Amendment 2, 1980. [131] 中国工程建设标准化协会标准 CECS 200: 2006. 建筑钢结构防火技术规范[S]. 北京: 中国计划出版社, 2006.
[132] 福建省工程建设地方标准 DBJ13-51-2003. 钢管混凝土结构技术规程[S]. 福州, 2003.
[133] 中华人民共和国国家标准 GB50017-2003. 钢结构设计规范[S]. 北京: 中国计划出版社, 2003.
[134] 中华人民共和国国家标准 JGJ 138-2001. 型钢混凝土组合结构技术规程[S]. 北京: 中国建筑工业出版社, 2002.
[135] 中华人民共和国国家标准 GB/T 228-2002. 金属材料室温拉伸试验方法[S]. 国家质量监督检验检疫总局. 北京: 中国标准出版社, 2002.
[136] ISO 834-1. Fire-resistance tests-elements of building
construction-Part 1: General requirements [S]. International Standard ISO 834, Geneva, 1999.
[137] Kodur V K R, Phan L. Critical factors governing the fire performance of high strength concrete systems [J]. Fire Safety Journal, 2007, 42(6-7): 482-488.
[138] Dwaikat M B, Kodur V K R. Hydrothermal model for predicting fire-induced spalling in concrete structural systems [J]. Fire Safety Journal, 2009, 44(3): 425-434.
[139] BS 5950-8:2003. Structural use of steelwork in building – Part 8: Code of practice for fire resistant design [S]. British Standards Institutions, London U.K., 2003.
[140] 李引擎, 马道贞, 徐坚. 建筑结构防火设计计算和构造处理[M]. 北京: 中国建筑工业出版社, 1991.
[141] Kodur V K R, Wang T C, Cheng F P, Predicting the fire resistance behavior of high strength concrete columns [J]. Cement and Concrete Composites, 2004, 26(2): 141-153. 参考文献 195
[142] Han L H, Xu L, Zhao X L. Tests and analysis on the temperature field within concrete filled steel tubes with or without protection subjected to a standard fire [J]. Advances in Structural Engineering - An International Journal, 2003, 6(2): 121-33.
[143] 孙金香, 高伟 译.建筑物综合防火设计[M]. 天津: 天津科技翻译出版公司, 1992.
[144] 孔祥谦. 有限单元法在传热学中的应用[M]. 北京: 科学出版社, 1998.
[145] 钟善桐. 钢管混凝土结构[M]. 哈尔滨: 黑龙江科学技术出版社, 1994.
[146] 过镇海, 时旭东. 钢筋混凝土原理和分析[M]. 北京: 清华大学出版社, 2003.
[147] Kodur V, Dwaikat M and Fike R. High-temperature properties of steel for fire resistance modeling of structures [J]. Journal of Materials in Civil Engineering, ASCE, 2010, 22(5): 423-434. [148] 曹文衔. 损伤累积条件下钢框架结构火灾反应的分析研究[博士学位论文]. 上海: 同济大学, 1998.
[149] 谢希文, 过梅丽. 材料科学基础[M]. 北京: 北京航空航天大学出版社, 2005.
[150] Eurocode 3. EN 1993-1-1:2005. Design of steel structures-part1-1: General rules and rules for buildings [S]. European Committee for Standardization, Brussels, 2005.
[151] 平修二. 金属材料的高温强度—理论·设计[M]. 郭廷玮, 李安定, 徐介平 译. 北京: 科学出版社, 1983.
[152] 杨建平. 高温下钢筋砼压弯构件的试验研究和理论分析及实用计算[博士学位论文]. 北京: 清华大学, 2000. [153] Skowroski W. Buckling fire endurance of steel columns [J]. Journal of Structural Engineering, ASCE, 1993, 119(6): 1712-1732.
[154] Zeng J L, Tan K H and Huang Z F. Primary creep buckling of steel columns in fire [J]. Journal of Constructional Steel Research, 2003, 59(8): 951-970.
[155] Huang Z F, Tan K H. Effects of external bending moments and heating schemes on the responses of thermally restrained steel columns [J]. Engineering Structures, 2004, 26(6): 769-780.
[156] Huang Z F, Tan K H and Ting S K. Heating rate and boundary restraint effects on fire resistance of steel columns with creep [J]. 2006, 28(6): 805-817.
[157] Bratina S, Saje M and Planinc I. The effects of different strain contributions on the response of RC beams in fire [J]. Engineering Structures, 2007, 29(3): 418-420.
[158] Kodur V K R, Dwaikat M. A numerical model for predicting the fire resistance of reinforced concrete beams [J]. Cement & Concrete Composites, 2008, 30(5): 431-443.
[159] Tan K H, Ting S K and Huang Z F. Visco-elasto-plastic analysis of steel frames in fire [J]. Journal of Structural Engineering, ASCE, 2002, 128(1): 105-114.
[160] 蔡跃. 火灾下预应力混凝土结构计算理论及抗火设计方法研究[博士学位论文]. 上海: 同济大学, 2003. 参考文献 197
[161] Fields B A, Fields R J. The prediction of elevated temperature deformation of structural steel under anisothermal conditions [R]. National Institute of Standards and Technology, Gaithersburg, MD, NCSTIR 4497, January 1991.
[162] 赵根田, 孙德发. 钢结构[M]. 北京: 机械工业出版社, 2005. [163] 陈骥. 钢结构稳定理论与设计(第三版)[M].北京:科学出版社, 2006.
[164] 陈肇元, 朱金铨, 吴佩刚. 高强混凝土及其应用[M].北京: 清华大学出版社, 1992.
[165] 中华人民共和国国家标准 GB 50010-2002. 混凝土结构设计规范[S]. 北京: 中国建筑工业出版社, 2002.
[166] Hibbitt, Karlson and Sorensen, Inc. ABAQUS/standard User's Manual, Version 6.5.1[CP]. Pawtucket, RI, 2004.
[167] 沈聚敏, 王传志, 江见鲸. 钢筋混凝土有限元与板壳极限分析[M]. 北京: 清华大学出版社, 1993.
[168] 时旭东. 高温下钢筋混凝土杆系结构试验研究和非线性有限
元分析[博士学位论文]. 北京: 清华大学, 1992.
[169] 李华东. 高温下钢筋混凝土压弯构件的试验研究[硕士学位论文]. 北京: 清华大学, 1994.
[170] 吕彤光. 高温下钢筋的强度和变形的试验研究[硕士学位论文]. 北京: 清华大学, 1996.
[171] Izzuddin B A, Elghazouli A Y and Tao X Y. Realistic modelling of composite floor slabs under fire conditions [C]. Proceedings of 15th ASCE Engineering Mechanics Conference. Columbia University, New York, 2002.
[172] Xiao J Z, K?nig G. Study on concrete at high temperature in China—an overview [J]. Fire Safety Journal, 2004, 31(1): 89-103.
[173] Li L Y, Purkiss J. Stress-strain constitutive equations of concrete material at elevated temperatures [J]. Fire Safety Journal, 2005, 40(7): 669-686.
[174] 林晓康. 火灾后钢管混凝土压弯构件的滞回性能研究[博士学位论文]. 福州: 福州大学, 2006.
[175] 陆洲导, 朱伯龙, 谭玮. 钢筋混凝土梁在火灾后加固修复研究[C]. 土木工程防灾国家重点试验室论文集, 1993: 152-162. [176] 李卫, 过镇海. 高温下混凝土的强度和变形性能试验研究[J]. 建筑结构学报, 1993, 14(1): 8-16.
[177] Harmathy T Z. Fire safety design and concrete, Concrete design and construction series [M].UK: Longman Scientific and Technical, 1993.
[178] 南建林, 过镇海, 时旭东. 混凝土的温度应力共同本构关系[J]. 清华大学学报, 1997, 37(6): 87-90.
[179] Anderberg G Y, Thelandersson S. Stress and deformation of concrete at hightemperatures: 2 Experimentalinvestigation and material behaviour [R]. Bulletin 54, Lund: Lund Institute of Technolgy, 1976.
[180] Sadaoui A, Khennane A. Effect of transient creep on the behaviour of reinforced concrete columns in fire [J]. Engineering Structures, 2009, 31(9): 2203-2208.
[181] Sadaoui A, Kaci S and Khennane A. Behaviour of reinforced concrete frames in a fire environment including transitional thermal creep [J]. Austrlian Journal of Structural Engineering, 2007, 7(3): 167-184.
[182] Yin J, Zha X X and Li L Y. Fire resistance of axially loaded concrete filled steel tube columns [J]. Journal of Constructional Steel Research, 2006, 62(7): 723-729.
[183] Thelandersson S. Modeling of combined thermal and mechanical action in concrete [J]. Journal of Engineering Mechanics, ASCE, 1987,