血液流变学检查的方法和临床应用 下载本文

R2×P ×t Q = ------------------------- 8 L×η 那麽,粘度

R2P t η = -------------- Q8 L

假设我们让两种液体通过同一根毛细管,而且流量也相同。那麽就成为下下公式: t1 t2 1 t1 Q1=Q2 ------- = ------- ------- = -------- 1 2 2 t2

这就是比粘度的概念,我们可以利用比粘度来表示两种液体的粘度区别。如果我们使用一种已知粘度的液体,如蒸馏水或生理盐水做参照液体,我们就可以间接测量血液的粘度。这种比粘度的概念一般是使用在血浆粘度的测定上,因为它被看作是牛顿液体,我们在测定其粘度时只选择一个切变率条件即可,不象测定全血粘度必须选择不同的切变率做为检测条件。

这点在无论是在仪器设计,测定操作中,还是在分析结果时都必须注意的。 四,检测技术和检测项目 (一)粘度

粘度测定是血液流变学试验中最基本,也是最主要的参数。

全血粘度的检测可使用悬丝法和锥板法两种测定方法,但是无论那种方法都必须设定高,中,低三个切变率条件,在不同的切变率下测定全血的表观粘度。国际血液学标准化委员会规定高切变率应当在150s

-1,中变率应当在50-60s-1,低变率应当在1-5s-1。

三个切变率的选择和设定,不仅是测定全血表观粘度的需要,更重要的是反映红细胞流变性的需要。我们已经知道,红细胞的数量对全血粘度影响很大,另外红细胞的流变性,也就是红细胞的聚集性和变形性对全血粘度的影响更为明显,具有极其重要的临床意义。红细胞相互聚集越是严重,血液粘度越大,血液流动越慢,流速越慢,切变率越小,粘度会进一步增高,血液流动就更慢,红细胞就更容易聚集,----,如此下去造成恶性循环,进一步加重组织的灌注不良,将带来一系列严重后果;红细胞本身具有非常大的可塑性,也就是它们非常容易变形,这对于维持血液的流动非常重要。如果红细胞的变形性减低,那麽血液流动一定减缓,血液粘度就回增加,进一步减低血液的流动速度,切变率变小,粘度增高,-----。如此下去造成恶性循环,进一步加重组织的灌注不良,将带来一系列严重后果。而血液学告诉我们,在低切变率的条件下,红细胞容易相互聚集(因为内摩擦力小);而在高切变率条件下,红细胞容易变形(因为内摩擦力大)。所以,低切变率下测定出的全血表观粘度实际上反映了该患者红细胞的聚集性;而高切变率下测定的全血表观粘度实际上是反映了该患者的红细胞变形性。

研究表明,低切变率低到1s-1,才能充分体现红细胞的聚集性,也就是说红细胞在1s-1低切变率下才能完全聚集。因此,为什麽现在都要求粘度计最好能设定出1s-1的低切变率条件。

血浆粘度测定相对简便,因为它不需要设定不同的切变率条件,一般规定在高切变率下(100 s-1-120 s-1范围测定即可。但是,锥板法粘度计由于在高切变率在测定时产生二次湍流现象,无法准确测定血浆粘度,所以不主张使用锥板法测定血浆粘度,可采用毛细管法或悬丝法。

悬丝粘度计有进口和国产品,其技术关键在于悬丝的设计和制造。到目前为止,只有悬丝法的仪器才可能将低切变率做到1S-1,所以是目前精度最高的仪器。下面对悬丝粘度计做简单介绍。

悬丝粘度计属于无磨擦粘度计,它由内外两个圆筒组成,外筒由马达带动旋转,转动力距通过血样传递得内筒,内筒本身不转动。检测时,内外筒之间仅通过样品接触,没有附加摩擦力距。内筒是悬挂在一根弹性另好而敏感的悬丝上,悬丝与内筒之间有一个多极电磁铁的铁芯和一面反光镜。当内筒受到由血样

传入的力时,内筒随外筒转动也有所转动,反光镜也会发生转动,使电磁铁也产生一个与内筒的力距大小相等而方向相反的反馈力距,平衡血样经内筒的力距使内筒恢复到原来的位置。仪器通过测量流过电磁铁的电流计算出血样的粘度。其突出优点是测试探头为双缝隙结构,末端效应小,无二次湍流,最适合检测低切变率下的粘度。经使用单位评价,用国家计量标准油(一个是低粘度8.77mPa.s,另一个是高粘度18.70mPa.s)测试仪器,所有偏差为0.5-1.5%,准确度符合要求;使用红细胞比积为0.44的样品,用自身血浆调整比积0.01的改变,从0.43-0.49,高,中,低三个切变率下的检测结果均有差异,说明该仪器的分辨率达到要求;重复性检测,180 s-1时的CV值为1.7%,1 s-1时的CV值为3.0%,也到达了国际血液标准化委员会(ICSH)提出的要求。《以上数据引自:扬 萍,李 巍,李 旭:BV-100悬丝流变仪性能检测分析,中国血液流变学杂志,2001;11(2):171-172》 切变率是由外筒的转速决定的,见表

表 BV-100转速与切变率的关系 --------------------------------------------------------- 转速(转/分) 切变率(s-1) ---------------------------------------------------------- 90 180 15 30 0.5 1 --------------------------------------------------------- (二)红细胞流变性 1,红细胞聚集性

我们可以通过以下方法测定或计算红细胞的聚集性。 (1)低切变率,最好是1s-1条件下全血粘度。

(2)根据粘度计算出所谓的红细胞聚集指数。 (3)血沉(ESR)和血沉方程K值

红细胞越是相互聚集,血沉速度就越快。但是血沉速度快慢还受红细胞数量的明显影响,为了排除红细胞数量(红细胞比积)的影响,人们设计了一个公式,采用了一个新的参数,即血沉方程K值来表示红细胞的聚集性。

血沉测定值

血沉K值 = -------------------------------------- en 是自然对数 -(血浆比积+en红细胞比积)

这样,血沉K值越大,表明红细胞聚集性越强。 (4)红细胞电泳率

红细胞表面带有负电荷使它们之间有种排斥力而彼此不相互聚集,在电场中可向正极移动。利用这一特征,设计了红细胞电泳仪,可以在显微镜下观察和计算红细胞泳动的速度,见下面计算公式: 红细胞泳动的距离(mm) 红细胞电泳速度(U)= -----------------------------------------

计数20个红细胞通过的平均时间(s)

如果红细胞聚集在一起,其泳动的速度就会减慢。根据这一观察可以了解患者红细胞的聚集性。 根据以上结果还可以计算红细胞的电泳率,见下面公式: 红细胞电泳速度(U) 红细胞电泳率(V)(EPM)= ----------------------------- 电场强度(E,V/cm)