第一章 直角三角形的边角关系
《锐角三角函数(第1课时)》
教学设计说明
深圳市华一实验学校 万剑波
一、学生知识状况分析
在本节课以前,学生学习了直角三角形的边边关系(如勾股定理)、角角关系(直角三角形的两个锐角互余)等知识.对于边角关系,平面几何中在特殊的直角三角形中有所接触,如“在直角三角形中,30o所对的直角边是斜边的一半”等.但还不能从根本上掌握直角三角形的边与角之间的内在联系.
本课时从学生观察比较熟悉的生活工具——梯子的倾斜程度来展开,便于学生在直观感受的基础上进一步探讨更本质的东西,即由直观感受转为定性分析,最终进行定量研究,从而揭示直角三角形边角关系的内在本质.由于学生基于生活经验有一定的直观感受,因此学习本章节内容就有了很好的生活基础,降低了学习难度.但要准确刻画梯子倾斜程度,就需要通过本节课的学习利用直角三角形边与边的关系来判断.
二、教学任务分析
本课是九年级下册第一章第一节《锐角三角函数》的第一课时.先由学生基于生活经验直观感受、判断梯子的倾斜程度,然后通过不易于判断的个例呈现给学生,引导学生进行简单的演算、比较、推理,教师采用教育技术实验的方法,借助几何画板,通过几何直观,帮助学生真正领会到直角三角形中边与角之间确实存在着一定的关系,最终探索出直角三角形中,一个锐角的对边与邻边的比是随锐角的变化而变化的.说明在直角三角形中,用一个锐角的对边与邻边的的比来定义正切是合理的.在问题解决的过程中,要渗透数形结合等数学思想方法,发展学生的几何直观能力和符号感.由于不同学生对问题的理解是不一样的,教师应尊重学生间的差异,不要急于否定学生的答案,而要鼓励学生开展讨论,给学生提供成果展示的机会,培养学生的交流能力及学习数学的自信心.
本节课教学目标如下:
知识与技能:
1.经历探索直角三角形中边角关系的过程.理解正切的意义和与现实生活的联系.
2.能够用tanA表示直角三角形中两直角边的比,表示生活中物体的倾斜程度、坡度(坡比)等.
3.能够根据直角三角形的边角关系,用正切进行简单的计算.
过程与方法:
1.体验数形之间的联系,逐步学习利用数形结合的思想分析问题和解决问题.
2.体会解决问题的策略的多样性,发展学生的几何直观能力和符号感,发展学生观察、分析、发现问题的能力.
情感态度与价值观:
1.通过本节课程的学习,促使学生更加热爱生活,理解数学源于生活,又为生活服务.
2.进一步锻炼学生用数学的观点来解释身边的事物,形成良好的数学思维习惯和思维品质.
教学重点:理解正切、倾斜程度、坡度的数学意义,密切数学与生活的
联系..
教学难点:理解正切的意义,并用它来表示两边的比.
三、教学过程分析
本节课设计了六个教学环节:第一环节:创设问题情境;第二环节:探求新知;第三环节:应用与拓展;第四环节:变式练习;第五环节:课堂小结;第六环节:布置作业.
第一环节 创设问题情境
本环节设计了两个活动内容
活动内容1:介绍世界文化遗产——意大利比萨斜塔,激发学习兴趣 我们都知道世界著名的建筑——意大利比萨斜塔.但你知道比萨斜塔是如何倾斜的和倾斜角度是多少吗?
如下图,小明说,只要测得垂直中心线、塔身中心线的长度及塔顶中心点偏离垂直中心线的距离这三个数据中的任意两个,他就可以计算出塔身倾斜角?的大小.你想知道小明是如何做的吗?那么,我们一起来学习新知识吧.通过本章的学习,你就会明白小明这样做的道理.
活动目的:让学生初步从实际问题中去体会直角三角形的边角之间存在一定的关系,并通过这个活动,让学生留意身边的数学;初步感受到倾斜程度在生活中的随处可见,并可以用数学模型来描述.
教学效果:学生对小明的方法感到好奇,生动的课堂引入激发了学生强烈的求知欲望.并能初步感受到倾斜程度是可以用数学方法来描述的.
活动内容2:观察梯子的倾斜程度
由活动1知道,倾斜的物体在生活中随处可见,那我们该如何判断物体的倾斜程度呢?大家都会用“陡峭”或“平缓”来描述.
1.图1—1和图1—2中,这里摆放的两个梯子,你能辨别出那一个比较陡一些吗?你是如何判断的?
2.图1—3中,这里摆放的两个梯子,你能辨别出那一个比较陡一些吗?你又是如何判断的?
图1—1
图1—2
图1—3
表1
对于图1—3,学生可能难于下手,这时老师可以借助几何画板的动态演示,引导学生比较对边与邻边的比值,即比较表一中的t1与t2大小,当t1>t2、t1 t1?t2时,借助几何画板直观的验证梯子的倾斜程度,以突破学生认识上的障碍. (为了方便研究,表格中的数据精确到十分位) 活动目的:先让学生从图1-1和图1-2中直观感受梯子的倾斜程度,再让学生理性思考该如何寻找方法判断图1-3中梯子的倾斜程度.这样学生会感到知识上的匮乏,从而对数学产生好奇心和求知欲.让他们从实例中体会不同情况下比较梯子的倾斜程度只靠直观感受是不够的,还需要其他方法——用边的比进行比