¡¶¾­¼Ã¼ÆÁ¿Ñ§¾«Òª¡·±Ê¼ÇºÍ¿ÎºóϰÌâÏê½â - ͼÎÄ ÏÂÔØ±¾ÎÄ

£¨1£©¹À¼ÆÉÏÊö»Ø¹é£¬²¢°´Õս̲Äʽ£¨3-46£©µÄÐÎʽ±¨¸æ»Ø¹é½á¹û¡£ £¨2£©Ê§ÒµÂʵı仯ÊÇʵ¼ÊGDPÔö³¤ÂʵÄÒ»¸ö¾ö¶¨ÒòËØÂð£¿ÎªÊ²Ã´£¿ £¨3£©ÈçºÎ½âÊͻعéÖеĽؾàϵÊý£¿ËüÊÇ·ñÓо­¼ÃÒâÒ壿 ´ð£º¸ÃÎÊÌâÊÇÁ·Ï°17µÄÑÓÉì¡£

£¨1£©¸ù¾Ý»Ø¹éÄ£Ð͵ÄÐÎʽ£¬ÎÒÃÇÊ×ÏÈÒª¸ù¾Ýʵ¼ÊGDP£¨RGDP£©ºÍʧҵÂÊ £¨UNRATE£©¼ÆËãбäÁ¿µÄÖµ£¬¾ßÌåÊýÖµ¼û»Ø¹é½á¹ûÊä³ö±í¡£¼ÆË㹫ʽÈçÏ£º

CHUNRATE=UNRATE-UNRATE??1?PCTCRGDP=??RGDP/RGDP?-1????100?100ÔËÓÃEViews½øÐлع飬¿ÉµÃÒÔϽá¹û£º

Dependent Variable£ºPCTCRGDP Sample£¨adjusted£©£º1960 2006

Variable Coefficient Std Error t-Statistic Prob C 3.319 11 0.166 7341 9.906 54 0.0000 CHUNRATE -1.862 97 0.185 785 -10.027 58 0.0000 R-squared 0.695 6 ×¢Ò⣺Ñù±¾µÄÆðʼʱ¼ä´Ó1960Äê±äΪ1961Ä꣬ÕâÊÇÒòΪÎÒÃǼÆËã±ä»¯ÂÊ£¨RGDPºÍUNRATE£©Ê±ËðʧÁ˵ÚÒ»ÆÚµÄ¹Û²âÖµ¡£

£¨2£©Êǵġ£ÒòΪбÂʹÀ¼ÆÁ¿µÄtֵΪ-10.028£¬ÆäÏàÓ¦µÄpÖµ¼¸ºõΪÁã¡£ £¨3£©½Ø¾àÏîµÄ»Ø¹éϵÊýÔÚͳ¼ÆÉÏÒ²ÊÇÏÔÖøµÄ¡£Æä¾­¼ÃѧÒâÒåΪµ±Ê§ÒµÂÊΪÁãʱ£¬Êµ¼ÊGDPµÄÔö³¤ÂÊΪ3.3%£¬¸ÃÊý×Ö¿ÉÒÔÀí½âΪ³¤ÆÚ»òÎÈ̬ʱµÄGDPÔö³¤ÂÊ¡£

20£®½Ì²ÄÀý2-3ÌÖÂÛÁË¹ÉÆ±¼Û¸ñÓëÀûÂÊÖ®¼äµÄ¹ØÏµ¡£½Ì²Äʽ£¨2-24£©¸ø³öµÄ»Ø¹é½á¹ûÊÇͳ¼ÆÏÔÖøµÄÂ𣿸ø³ö±ØÒªµÄ¼ÆËã¡£

´ð£ºÔËÓÃEViewsÈí¼þ½øÐлع飬¿ÉµÃÒÔϽá¹û£º

Dependent Variable£ºSP500 Sample£º1980 1999 Variable Coefficient Std£®Error t-Statistic Prob C 404.406 7 128.647 5 3.143 5 0.0041 1/MTB3 996.865 6 404.232 4 2.466 1 0.0206 R-squared 0.273968 бÂʵĻعéϵÊýÔÚ2%µÄÏÔÖøË®Æ½ÏÂÊÇÏÔÖøµÄ£¬½Ø¾àµÄ»Ø¹éϵÊýÔÚ0.4%µÄÏÔÖøË®Æ½ÏÂÒ²ÊÇÏÔÖøµÄ¡£ÓÉÓÚÁô´æÎó²îµÄÎÊÌ⣬´Ë´¦µÄ»Ø¹é½á¹ûºÍÊéÖеĻعé½á¹ûÓÐ΢СµÄ²»Í¬¡£

21£®½Ì²ÄÀý2-5ÌÖÂÛÁ˹Ŷ­ÖÓºÍËüµÄ¼Û¸ñ¡£¸ù¾Ý½Ì²Ä±í2-14£¬µÃµ½Á˻عé½á¹û½Ì²Äʽ£¨2-27£©ºÍ½Ì²Äʽ£¨2-28£©¡£Çóÿ¸ö»Ø¹é½á¹ûµÄ±ê×¼Îó¡¢tÖµºÍr¡£¼ìÑéÁ½¸ö»Ø¹éµÄбÂÊϵÊýÊÇ·ñÊÇͳ¼ÆÏÔÖøµÄ¡£

´ð£ºÔËÓÃEViews£¬¿ÉµÃ½Ì²Äʽ£¨2-27£©µÄ»Ø¹é½á¹ûÈçÏ£º Dependent Variable£ºPRICE Sample£º1 32 Variable Coefficient Std Error t-Statistic Prob C -191.666 2 264.439 3 -0.724 802 0.4742 AGE 10.485 62 1.793 729 5.845 711 0.0000 R-squared 0.532509 »Ø¹éÄ£ÐÍбÂÊÔÚͳ¼ÆÉÏÊǸ߶ÈÏÔÖøµÄ£¬ÒòΪÁã¼ÙÉèÎªÕæµÄÌõ¼þÏ£¬Áîtͳ¼ÆÁ¿´óÓÚ»òµÈÓÚ5.8457µÄpÖµ¼¸ºõΪÁã¡£¶ø½Ø¾àÏîµÄpֵȴºÜ¸ß£¬Òò´ËÆäÔÚͳ¼ÆÉÏÊDz»ÏÔÖøµÄ¡£

ͬÑù£¬¿ÉµÃ½Ì²Äʽ£¨2-28£©µÄ»Ø¹é½á¹ûΪ£º

Dependent Variable£ºPRICE Sample£º1 32 2

Variable Coefficient Std Error t-Statistic Prob C 807.950 1 231.092 1 3.496 226 0.0015 NOBIDDERS 54.572 45 23.266 05 2.345 582 0.0258 R-squared 0.154971 ´ËʱÁ½¸ö±äÁ¿»Ø¹éϵÊýµÄpÖµ¶¼ºÜС£¬Òò´ËÆäÔÚͳ¼ÆÉÏÊÇÏÔÖøµÄ¡£

22£®²Î¿¼Ï°Ìâ22¡£ÀûÓÃOLS»Ø¹é»Ø´ðÎÊÌ⣨1£©¡¢£¨2£©ºÍ£¨3£©¡£ ´ð£ºÏ±íËù³ÊÏֵĻعé½á¹ûͬÁ·Ï°2.16µÄ½á¹ûÏàͬ¡£ £¨1£©EViewsµÄ»Ø¹é½á¹ûÈçÏ£º Dependent Variable£ºASP Sample£º1 64 Variable Coefficient Std Error t-Statistic Prob. C -882 20.49 766 38.60 -1.151 1 0.2541 GPA 552 27.44 226 97.53 2.433 2 0.0179 R-squared 0.087 2

¿É¼û£¬GPA¶ÔASP´æÔÚÕýÏòÓ°Ï죬Æä»Ø¹éϵÊýÔÚͳ¼ÆÉÏÊÇÏÔÖøµÄ£¬ÒòΪÏàÓ¦»Ø¹éϵÊýµÄpÖµ·Ç³£Ð¡¡£ £¨2£©ASP¶ÔCMATµÄ»Ø¹é½á¹ûÈçÏ£º Dependent Variable£ºASP Sample£º1 65 Variable Coefficient Std Error t-Statisfic Prob£® C -241 386.6 29 464.86 -8.192 36 0.0000 GMAT 511.720 7 44.357 05 11.536 4 0.0000 R-squared 0.6822 GMAT»Ø¹éϵÊýµÄ¹À¼ÆÁ¿ÔÚͳ¼ÆÉÏÊÇÏÔÖøµÄ£¬ÇÒÆä¶ÔASP´æÔÚÕýÏòÓ°Ïì¡£ £¨3£©ASP¶Ôѧ·ÑµÄ»Ø¹é½á¹û£º

Dependent Variable£ºASP Sample£º1 65 Variable Coefficient Std Error t-Statistic Prob C 42 878.33 5 502.063 5 7.793 14 0.0000 TUITION 1.634784 0.156 924 10.417.7 0.0000 R-squared 0.6364 ѧ·Ñ£¨ÔÚÒ»¶¨³Ì¶ÈÉÏ·´Ó³Á˽ÌѧÖÊÁ¿£©¶ÔASP´æÔÚÏÔÖøµÄÕýÏòÓ°Ï졣ͬÑù£¬ÈëѧµÈ¼¶¶ÔASPÒ²´æÔÚÏÔÖøµÄÕýÏòÓ°Ï죬ÕâÒ»µã¿ÉÒÔ´ÓÒÔϵĻعé½á¹ûÖп´³ö£º

Dependent Variable£ºASP Sample£º1 65 Variable Coefficient Std Error t-Statistic Prob C -29 943.60 10 973.495 -2.728 72 0.0089 RECRUITER 37 300.30 3 020.518 7 12.348 97 0.0000 R-squared 0.7644

23£®±í3-7¸ø³öÁËÃÀ¹ú1959¡«2006Äê½ø¿Ú»õÎïÖ§³ö£¨Y£©ºÍ¸öÈË¿ÉÖ§ÅäÊÕÈ루X£©µÄÊý¾Ý£¨¼ûÍøÉϽ̲ģ©¡£¸ù¾Ý±íÖеÄÊý¾Ý£¬¹À¼Æ½ø¿ÚÖ§³öº¯Êý£¬¸ø³ö³£ÓõÄͳ¼ÆÁ¿£¬²¢¼ìÑé¼ÙÉ裺½ø¿ÚÖ§³öÓë¸öÈË¿ÉÖ§ÅäÊÕÈë²»Ïà¹Ø¡£

´ð£º»Ø¹é½á¹ûÈçÏ£ºÆäÖÐYΪ½ø¿Ú»õÎïÖ§³ö£¬XΪ¸öÈË¿ÉÖ§ÅäÊÕÈë¡£

Dependent Variable£ºY Sample£º19592006 Variable Coefficient Std Error t-Statistic Prob C -136.164 9 23.565 09 -5.778 25 0.0000

X 0.208 248 0.005 467 38.091 1 0.0000 R-squared 0.9693 ²»ÄÑ·¢ÏÖ£¬¸öÈË¿ÉÖ§ÅäÊÕÈëͬ½ø¿Ú»õÎïÖ§³öÖ®¼ä´æÔÚÏÔÖøµÄÕýÏò¹ØÏµ¡£Ð±ÂÊÏîµÄpÖµ¼¸ºõΪÁ㣬Òò´Ë¿ÉÒԾܾøÁã¼ÙÉè¡£

24£®Ö¤Ã÷OLS¹À¼ÆÁ¿b1ºÍb2ÊÇÏßÐÔ¹À¼ÆÁ¿£¬²¢Ö¤Ã÷ÕâЩ¹À¼ÆÁ¿ÊÇÎó²îÏîuiµÄÏßÐÔº¯Êý¡£ £¨Ìáʾ£ºb2?£© ?xiyi/?xi??wiyiÆäÖУ¬wi?xi/?xi£¬×¢ÒâXÊÇ·ÇËæ»úµÄ¡£

22´ð£ºÁîwi?xi/?xi£¬Ôòb2??wiyi£¬Òò´Ëb2ÊÇÒ»¸öÏßÐԵĹÀ¼ÆÁ¿£¬¼´b2ÊÇYµÄÏßÐÔº¯Êý£¬ÔÚÍÆµ¼¹ý³Ì

2ÖУ¬ÎÒÃǽ«XÉ趨Ϊ·ÇËæ»úµÄ¡£ÀàËÆµÄ²½Öè¿ÉÒÔÖ¤Ã÷b1Ò²ÊÇÏßÐԵĹÀ¼ÆÁ¿¡£

ÒòΪ

?xy??xY??x?B?BX?x?x?x?x?B?xX??xu?B?x?x?x?xu?B??x?xX?1¡£

ÍÆµ¼¹ý³ÌÖÐÔËÓÃÁË?x???X?X??0ºÍ

?xb2?ii2ii2ii122ii1i2ii22ii2iii2ii2iiii?ui?

ii2i?xiui????B2¡£ Òò´ËÓÐE?b2??E?B2?2??xi?????xiui?E??xiui?2??×¢Ò⣺E?£¬ÕâÊÇÒòΪ¡£ÀàËÆµÄ²½Öèx?iΪ³£ÊýÇÒXºÍu²»Ïà¹Ø£¨OLS»ù±¾¼Ù¶¨£©2??x2??xii??¿ÉÒÔÍÆµ¼³öb1Ò²ÊÇÎÞÆ«µÄ¡£

25£®Ö¤Ã÷½Ì²Äʽ£¨3-35£©¡££¨Ìáʾ£º°Ñ½Ì²Äʽ£¨3-33£©Æ½·½£¬È»ºóÀûÓÃOLSµÄÐÔÖÊ¡££© ´ð£º¶Ôʽyi?b2xi?eiÁ½±ßͬʱȡƽ·½ÔÙÇóºÍ£¬ÒòΪ

?xe?0£¬ÓУº

ii22?y?b2

2i?b22?xi??ei?2b2?xiei2i22?x??ei

µÚËÄÕ ¶àÔª»Ø¹é£º¹À¼ÆÓë¼ÙÉè¼ìÑé

4.1 ¸´Ï°±Ê¼Ç

Ò»¡¢Èý±äÁ¿ÏßÐԻعéÄ£ÐÍ

1£®Èý±äÁ¿»Ø¹éÄ£Ð͵ĺ¯ÊýÐÎʽ

°ÑË«±äÁ¿×ÜÌ廨¹éº¯Êý£¨PRF£©Ò»°ã»¯£¬¼´¿Éд³öÈý±äÁ¿PRFµÄ·ÇËæ»úÐÎʽ£º

E?Yt??B1?B2X2t?B3X3t £¨4-1£©

Ëæ»úÐÎʽΪ

Yt?B1?B2X2t?B3X3t?ut?E?Yt??ut £¨4-2£©

ÆäÖУ¬Y¡ª¡ªÓ¦±äÁ¿£»X2,X3¡ª¡ª½âÊͱäÁ¿£»u¡ª¡ªËæ»úÈŶ¯ÏÔÚÈý±äÁ¿Ä£ÐÍ»ò¶àÔª»Ø¹éÄ£ÐÍÖУ¬ÒýÈëuµÄÔ­ÒòÓëË«±äÁ¿Ä£ÐÍÏàͬ¡£B1Êǽؾ࣬±íʾÁ˵±X2,X3ΪÁãʱµÃYµÄƽ¾ùÖµ£¬B2,B3³ÆÎªÆ«»Ø¹éϵÊý¡£

¶àÔª»Ø¹éÄ£Ð͵ÄËæ»úÐÎʽʽ£¨4-2£©±íÃ÷£¬ÈκÎÒ»¸öYÖµ¿ÉÒÔ±íʾ³ÉΪÁ½²¿·ÖÖ®ºÍ£º

£¨1£©ÏµÍ³³É·Ö»òÈ·¶¨ÐԳɷÖB1?B2X2t?B3X3t£¬Ò²¾ÍÊÇYµÄ¾ùÖµE?Yt?£¨¼´×ÜÌ廨¹éÏßÉϵĵ㣩¡£ £¨2£©·Çϵͳ³É·Ö»òËæ»ú³É·Öu¡£ÓɳýX2¡¢X3ÒÔÍâÆäËûÒòËØ¾ö¶¨¡£ 2£®Æ«»Ø¹éϵÊýµÄº¬Òå

B2,B3³ÆÎªÆ«»Ø¹éϵÊý»òƫбÂÊϵÊý¡£B2¶ÈÁ¿ÁËÔÚX3±£³Ö²»±äµÄÇé¿öÏ£¬X2µ¥Î»±ä¶¯ÒýÆðY¾ùÖµE?Y?µÄ±ä»¯Á¿¡£Í¬ÑùµÄB3¶ÈÁ¿ÁËÔÚX2±£³Ö²»±äµÄÇé¿öÏ£¬X3µ¥Î»±ä¶¯ÒýÆðY¾ùÖµE?Y?µÄ±ä»¯Á¿¡£ÕâÊǶàÔª»Ø¹éµÄÒ»ÌõÌØÊâÐÔÖÊ£»ÔÚË«±äÁ¿ÇéÐÎÏ£¬ÓÉÓÚ½öÓÐÒ»¸ö½âÊͱäÁ¿£¬Òò¶øÎÞÐëµ£ÐÄÄ£ÐͳöÏÖÆäËû½âÊͱäÁ¿¡£¶øÔÚ¶àÔª»Ø¹éÖУ¬ÏëÒªÖªµÀµÄÊÇY¾ùÖµµÄ±ä¶¯Óжà´ó±ÈÀý¡°Ö±½Ó¡±À´Ô´ÓÚX2£¬¶à´ó±ÈÀý¡°Ö±½Ó¡±À´Ô´ÓÚX3¡£

¶þ¡¢¶àÔªÏßÐԻعéÄ£Ð͵ÄÈô¸É¼Ù¶¨

¼Ù¶¨1£º»Ø¹éÄ£ÐÍÊDzÎÊýÏßÐԵ쬲¢ÇÒÊÇÕýÈ·É趨µÄ£»

¼Ù¶¨2£ºX2¡¢X3ÓëÈŶ¯Ïîu²»Ïà¹Ø¡£Èç¹ûX2¡¢X3ÊÇ·ÇËæ»úµÄ£¨¼´X2¡¢X3ÔÚÖØ¸´³éÑùÖÐÈ¡¹Ì¶¨Öµ£©£¬ÔòÕâ¸ö¼Ù¶¨½«×Ô¶¯Âú×ã¡£

µ«ÊÇ£¬Èç¹û±äÁ¿XÊÇËæ»úµÄ£¬ÄÇôËüÃDZØÐë¶ÀÁ¢·Ö²¼ÓÚÎó²îÏîu£¬·ñÔòÎÞ·¨µÃµ½»Ø¹éϵÊýµÄÎÞÆ«¹À¼ÆÖµ¡£

¼Ù¶¨3£ºÎó²îÏî¾ùֵΪÁ㣬¼´£ºE?ui??0¡£ ¼Ù¶¨4£ºÍ¬·½²î¼Ù¶¨£¬¼´uµÄ·½²îΪһ³£Á¿£º

var?ui???2

¼Ù¶¨5£ºÎó²îÏîuiºÍujÎÞ×ÔÏà¹Ø£¬¼´

cov?ui,uj?,i?j

¼Ù¶¨6£º½âÊͱäÁ¿X2ºÍX3Ö®¼ä²»´æÔÚÍêÈ«¹²ÏßÐÔ£¬¼´Á½¸ö½âÊͱäÁ¿Ö®¼äÎÞÑϸñµÄÏßÐÔ¹ØÏµ£¬ÕâÊÇÏà¶ÔÓÚË«±äÁ¿»Ø¹éÄ£ÐÍÒ»¸öмٶ¨¡£

¼Ù¶¨7£ºÎªÁ˽øÐмÙÉè¼ìÑ飬¼Ù¶¨Ëæ»úÎó²îu·þ´Ó¾ùֵΪÁ㣬£¨Í¬£©·½²îΪ?2µÄÕý̬·Ö²¼¡£¼´