重庆邮电大学本科毕业设计(论文)
一、多数据融合与方法综合
人脸识别技术经过这几十年的发展,已取得非常不错的成果。但是各种技术和方法都有自己不同的适应环境和各自的特点。如何使用数据融合理论,将不同的方法综合起来,相互补充,来取得较好的人脸识别效果,便成为人们的研究热点之一。
二、动态跟踪人脸识别系统
目前的静态人脸识别技术只能满足一般身份识别场合如门禁系统,考勤系统等,无法进行人脸的动态跟踪与识别。随着现在社会的发展,目前对动态人脸的跟踪与识别的需求越来越大,尤其是在一些安全领域。
三、基于小波神经网络的人脸识别
小波自提出以来,其理论和应用得到了长足的发展。它被认为是傅里叶分析的突破性的发展。随着神经网络的理论研究的深入,与小波,混沌,模糊集等非线性理论相结合已成为一个非常重要的发展方向。小波变换具有时频特性和变焦特性,神经网络具有自学习,自适应,鲁棒性,容错性和推广能力。如果能结合两者的优势,将会取得人脸识别不错的效果。
四、三维人脸识别
目前许多人脸识别成果是建立在二维人脸基础上的,而实际的人脸是三维的。三维人脸相比较于二维图像提供了更加完整的人脸信息。随着现在三维人脸采集技术的逐步发展,如何利用三维人脸进行人脸识别已成为一个新的研究热点。
五、适应各种复杂背景的人脸分割技术
现在在复杂背景下的人脸分割已经取得了一定的成果,如弹性匹配,但检测速度和效果还无法令人满意。在复杂背景下快速有效检测和分割人脸技术还需进一步的研究。
六、全自动人脸识别技术
全自动人脸识别技术目前还处于初级研究阶段,识别效果和速度离实际的要求还相差甚远。具体原因是人脸是非刚体,无法得到准确完整的描述人脸特征。如何有效的表达人脸特征将是其研究的重点。
- 4 -
重庆邮电大学本科毕业设计(论文)
第三节 人脸识别技术的主要难点
目前的人脸识别技术在人员配合,较理想采集条件下可以取得比较满意的结果。但在人员不配合,采集条件不理想下,系统的性能陡然下降。目前的主要的难点为:
一、复杂条件下人脸的检测和关键点定位
人脸检测和关键点定位为实际人脸识别系统的前端处理模块,此模块直接影响着人脸识别系统的性能。目前大多数特征定位算法的精度都会随着光照,姿态等变化而快速下降。复杂条件下的人脸检测与关键点定位是目前人脸识别急需解决的问题之一。
二、光照问题
关照问题是计算机视觉存在已久的问题,尤其在人脸识别中表现得更加明显。但目前为止光照处理技术远未达到实用的程度,还需要深入的研究。
三、资态问题
对于姿态的研究相对不多,现在人脸识别算法主要以正面或准正面姿态。当人脸姿态俯仰或左右比较大时,人脸识别的识别率骤降。如何提高人脸识别系统对姿态的鲁棒性是人脸识别中一个具有挑战性的任务。
四、表情问题
表情识别是生物特征识别的中的一种,是人机交互不可或缺的部分。表情是复杂的面部肌肉运动,每个表情都是几十块面部肌肉共同运动的结果,很难用精确的数学模型来表示这些肌肉的运动。面部表情的变化为面部特征点的运动。由于目前的计算机技术的限制,计算机还不能准确的定位这些面部特征点,也无法辨别面部肌肉的运动。而且,同一种表情在不同的人上也会有不同的表现形式。并且同一个人的不同表情之间也没有明确的界限。以上这些决定计算机很难用统一的标准来识别人的面部表情。
五、遮挡问题
对于非配合情况下,采集到的人脸图像一般都不是完整的,这会影响人脸特征提取与识别,可能还会导致人脸检测算法的失效。如何有效地排除遮挡物的影响有着非常重要的意义,如在监控环境下。
以上列举了部分主要的技术难点,其他难点由于本文的讨论不会涉及,所以不会再一一列
- 5 -
重庆邮电大学本科毕业设计(论文)
举。本文的实验是在人脸图像正面姿态,光照正常,表情正常,部分面部图像有小范围遮挡的情况下进行的。这样做的目的只是让我们的工作重心集中在分析PCA 人脸识别算法性能上。
第四节 人脸识别流程
人脸图像获取人脸图像获取预处理预处理特征提取特征提取特征匹配系统数据库输出结果 图1.1 人脸识别系统处理流程
一、人脸图像采集
采集人脸图像是通过传感器采集人脸图像,并将其转换为计算机可以处理的数字信号。这是人脸识别的第一步。在采集人脸图像时,要注意用户人脸姿态,脸部有无遮挡,周围光照是否满足要求及设备采集图像的质量是否能满足要求。
二、预处理
预处理是为了除去噪声和对测量仪器或其他因素对人脸图像造成退化现象进行复原。从传感器采集到图像除了包含人脸特征信息,还包含背景信息,所以必须从原始人脸图像分割出我们要处理的部分。如何分割就需要定位和分割算法。他们一般以人脸图像在图像结构和人脸信号分布的先验知识为依据。常用的人脸预处理有人脸图像灰度化,人脸图像二值化,人脸图像归一化,直方图修正,图像滤波和图像锐化。
三、特征提取
- 6 -
重庆邮电大学本科毕业设计(论文)
特征提取就是计算机通过提取人脸图像中能够凸显个性化差异的的本质特征,进而来实现身份识别。本文讲解如何使用PCA算法提取人脸特征,进而实现人脸识别。特征主要包括三种类型:物理特征,结构特征和数学特征。由于物理特征和结构特征容易被察觉,触觉以及其他感觉器官所感知,所以人类常常是利用这些特征来对对象进行识别。对于计算机而言,模拟人类的感觉器官是很难实现的,但计算机在处理数学特征的能力上要比人类强得多,因此我们通过诸如协方差矩阵,统计平均值和相关系数等数学特征来构建人脸识别系统。特征提取和选择的根本任务就是从许多特征中找出那些最有效的特征。在样本数不是很多的情况下,可以利用这些特征进行分类器的设计,但是在大多数情况下,由于测量空间的维数很高,不能直接进行分类器的设计。因此,如何把高维测量空间压缩到低维特征空间,以便有效的设计分类器,便成为了一个值得思考的问题。
为了获得有效的特征,一般需要经过特征形成,特征提取和特征选择等步骤。
1. 特征形成
特征形成是根据被识别对象产生出一组基本特征的过程,当被识别的对象是波形或数字图像时,这些特征可以通过计算得来;当被识别对象是实物或某种过程时,这些特征可以用仪表或传感器测量来得到。通过上面方法获得特征被称为原始特征。
2. 特征提取
原始数据组成的空间被称为测量空间。由于测量空间的维数一般都很高,不易设计分类器,所以在分类器设计之前,需要从测量空间变换到维数很少的特征空间,由特征向量表示。通过映射或变换方法用低纬空间来表示样本的过程被称为特征提取。映射后的特征称为二次特征,它们是原始特征的某种组合,通常是线性组合。
3. 特征选择
从一组特征中挑出一些最有效的特征从而达到降低特征空间维数目的的过程称为特征选择。由于在许多实际问题中常常不容易找到那些最重要的特征,或者由于条件限制而不能对这些重要特征进行测量。从而使得特征选择和特征提取的任务复杂化。
特征提取和特征选择在有些情况下并不是截然分开的,因为从一定意义上来讲,二者都是要达到对数据进行降维的目的,只是实现的途径不同。特征提取是通过某种变换的方法组合原有的高维特征,从而得到一组低维的特征。而特征选择是根据专家的检验知识或评价准则来挑选对分类最有影响的特征。比如可以先将原始特征空间映射到维数较低的空间,在这个空间中在进一步选择特征来进一步降低维度;也可以先去除那些明显不含有分类信息的特征,而后再进行映射以降低维度。
四、特征匹配
- 7 -