课后答案(作业) 下载本文

ΔT2=85K,ΔT1=65K

?Tm??T2??T185K?65K??74.55K ?T285lnln65?T1由热量守恒可得

KAΔTm=qmL

A?qmL350kg/h?2258.4kJ/kg2??4.21m 2K?Tm700W/(m?K)?74.55K列管式换热器的换热面积为A总=19×19mm×π×1.2m

=1.36m2<4.21m2

故不满足要求。

4.13若将一外径70mm、长3m、外表温度为227℃的钢管放置于: (1)很大的红砖屋内,砖墙壁温度为27℃; (2)截面为0.3×0.3m2的砖槽内,砖壁温度为27℃。

试求此管的辐射热损失。(假设管子两端的辐射损失可忽略不计)补充条件:钢管和砖槽的黑度分别为0.8和0.93 解:(1)Q1-2=C1-2φ1-2A(T14-T24)/1004 由题有φ1-2=1,C1-2=ε1C0,ε1=0.8 Q1-2=ε1C0 A(T14-T24)/1004

=0.8×5.67W/(m2·K4)×3m×0.07m×π×(5004K4-3004K4)/1004 =1.63×103W

(2)Q1-2=C1-2φ1-2A(T14-T24)/1004 由题有φ1-2=1

C1-2=C0/[1/ε1+A1/A2(1/ε2-1)]

Q1-2=C0/[1/ε1+A1/A2(1/ε2-1)] A(T14-T24)/1004

=5.67W/(m2·K4)[1/0.8+(3×0.07×π/0.3×0.3×3)(1/0.93-1)]×3m×0.07m×π×(5004K4-3004K4)/1004

=1.42×103W

4.14一个水加热器的表面温度为80℃,表面积为2m2,房间内表面温度为20℃。将其看成一个黑体,试求因辐射而引起的能量损失。

解:由题,应满足以下等式

Q1?2C1?2?1?2A(T14?T24)?

1004且有φ1-2=1;A=A1;C1-2=C0×ε1 又有A1=2m2;ε1=1 所以有

Q1?2C0A1(T14?T24)5.67?2?(3534?2934)???925.04W

10041004第五章

5.9 在稳态下气体A和B混合物进行稳态扩散,总压力为1.013×105Pa、温度为278K。气相主体与扩散界面S之间的垂直距离为0.1m,两平面上的分压分别为PA1=1.34×104Pa和PA2=0.67×104Pa。混合物的扩散系数为1.85×10-5m2/s,试计算以下条件下组分A和B的传质通量,并对所得的结果加以分析。

(1)组分B不能穿过平面S; (2)组分A和B都能穿过平面S。

解:(1)由题,当组分B不能穿过平面S时,可视为A的单向扩散。

pB,1=p-pA,1=87.9kPa pB,2=p-pA,2=94.6kPa

pB,m?ln?pB2pB,1?pB,2?pB,1?0.9121?105Pa

DAB=1.85×10-5m2/s

NA?DABp?pA,1?pA,2?RTpB,mL?5.96?10?4mol?m2?s?

(2)由题,当组分A和B都能穿过平面S,可视为等分子反向扩散

NA?DAB?pA,1?pA,2?RTL?5.36?10?4mol?m2?s?

可见在相同条件下,单向扩散的通量要大于等分子反向扩散。

5.5 一填料塔在大气压和295K下,用清水吸收氨-空气混合物中的氨。传质阻力可以认为集中在1mm厚的静止气膜中。在塔内某一点上,氨的分压为6.6×103N/m2。水面上氨的平衡分压可以忽略不计。已知氨在空气中的扩散系数为0.236×10-4m2/s。试求该点上氨的传质速率。

解:设pB,1,pB,2分别为氨在相界面和气相主体的分压,pB,m为相界面和气相主体间的对数平均分压 由题意得:

pB,m?ln?pB,2pB,1?pB,2?pB,1?0.97963?105Pa

NA?DABp?pA,1?pA,2?RTpB,mL??6.57?10?2mol?m2?s?

第六章

6.2 密度为2650kg/m3的球形颗粒在20℃的空气中自由沉降,计算符合斯托克斯公式的最大颗粒直径和服从牛顿公式的最小颗粒直径(已知空气的密度为1.205kg/m3,黏度为1.81×10-5Pa·s)。

解:如果颗粒沉降位于斯托克斯区,则颗粒直径最大时,ReP?dPut???2

?????gdP ?所以ut?2,同时ut?PdP?18?2所以dp?32?18?2,代入数值,解得dp?7.22?10?5m

???p???g同理,如果颗粒沉降位于牛顿区,则颗粒直径最小时,ReP?dPut???1000

所以ut?1000?,同时ut?1.74dP???p???gdp? ?2所以dp?32.33,代入数值,解得dp?1.51?10?3m

???p???6.7 降尘室是从气体中除去固体颗粒的重力沉降设备,气体通过降尘室具有一定的停留时间,若在这个时间内颗粒沉到室底,就可以从气体中去除,如下图所示。现用降尘室分离气体中的粉尘(密度为4500kg/m3),操作条件是:气体体积流量为6m3/s,密度为0.6kg/m3,黏度为3.0×10-5Pa·s,降尘室高2m,宽2m,长5m。求能被完全去除的最小尘粒的直径。

含尘气体

降尘室 ut ui 净化气体 图6-1 习题6.7图示

解:设降尘室长为l,宽为b,高为h,则颗粒的停留时间为t停?l/ui,沉降时间为t沉?h/ut,当t停?t沉时,颗粒可以从气体中完全去除,t停?t沉对应的是能够去除的最小颗粒,即l/ui?h/ut

因为ui?qVhuhqq6,所以ut?i?V?V??0.6m/s hbllhblb5?2假设沉降在层流区,应用斯托克斯公式,得

dpmin?18?ut18?3?10?5?0.6??8.57?10?5m?85.7μm

9.81??4500?0.6?g??p???检验雷诺数

Rep?dput?8.57?10?5?0.6?0.6??1.03?2,在层流区。 ?53?10?所以可以去除的最小颗粒直径为85.7μm

6.8 采用平流式沉砂池去除污水中粒径较大的颗粒。如果颗粒的平均密度为2240kg/m3,沉淀池有效水深为1.2m,水力停留时间为1min,求能够去除的颗粒