¸ÅÂÊÂÛϰÌâ²á´ð°¸ÖйúµØÖÊ´óѧ ÏÂÔØ±¾ÎÄ

6.´üÖÐÓÐ1¸öºìÉ«Çò£¬2¸öºÚÉ«ÇòÓë3¸ö°×É«Çò£¬ÏÖÓзŻصشӴüÖÐÈ¡Á½´Î£¬Ã¿´ÎȡһÇò£¬ÒÔX£¬Y£¬Z·Ö±ð±íʾÁ½´ÎÈ¥ÇóËùÈ¡µÃµÄºìÇò¡¢ºÚÇòÓë°×ÇòµÄ¸öÊý£¬ £¨1£© ÇóPX?1Z?0£»

£¨2£© Çó¶þÎ¬Ëæ»ú±äÁ¿?X,Y?µÄ¸ÅÂÊ·Ö²¼¡£

½â£º£¨1£©ÔÚûÓÐÈ¡°×ÇòµÄÇé¿öÏÂÈ¡ÁËÒ»´ÎºìÇòÏ൱ÓÚÖ»ÓÐ1¸öºìÇò£¬2¸öºÚÇòÓзŻصÄÈ¡Á½´Î£¬ÆäÖÐÃþµ½Ò»¸öºìÇò

1C2?24?P?X?1Z?0??11?£»

C3?C39??£¨2£©X£¬YµÄȡֵ·¶Î§Îª0,1,2£¬¹Ê

11C3C111P?X?0,Y?0??13?,PX?1,Y?0?,PX?2,Y?0?,????1C6C6463611P?X?0,Y?1??,P?X?1,Y?1??,P?X?2,Y?1??0,391P?X?0,Y?2??,P?X?1,Y?2??0,P?X?2,Y?2??0,9 X Y 0 1 2

0 1/4 1/3 1/9 1 1/6 1/9 0 2 1/36 0 0

¡ì3.2 ±ßÔµ·Ö²¼ ¡ì3.3 Ìõ¼þ·Ö²¼

¡ì3.4 Ëæ»ú±äÁ¿µÄ¶ÀÁ¢ÐÔ

Èý¡¢¼ÆËãÏÂÁи÷Ìâ

1. ÉèËæ»ú±äÁ¿XÔÚ1,2,3,4ËĸöÕûÊýÖеȿÉÄÜȡֵ£¬ÁíÒ»¸öËæ»ú±äÁ¿YÔÚ1~XÖеȿÉÄÜȡһ¸öÕûÊýÖµ£¬Çó£¨1£©(X,Y)µÄÁªºÏ·Ö²¼ÂÉ£»£¨2£©X£¬YµÄ±ßÔµ·Ö²¼ÂÉ¡£

½â£ºÓÉÌâÒâ?X?i,Y?j?,ÆäÖÐi?1,2,3,4,j?i,jΪÕûÊý£¬ ÔòÓɸÅÂʵij˷¨¹«Ê½ÓÐ

P?X?i,Y?j??P?X?i?P?Y?jX?i??Òò´Ë

X Y 1 1 1/4 2 1/8 3 1/12 111?,i?1,2,3,4,j?i. 4i4i4 1/16 pj 25/48 2 3 4 0 0 0 1/4 1/8 0 0 1/4 1/12 1/12 0 1/4 1/16 1/16 1/16 1/4 13/48 7/48 3/48 1

pi 2. Éè¶þÎ¬Ëæ»ú±äÁ¿(X,Y)µÄ¸ÅÂÊÃܶÈΪf(x,y)?6, ???x???, ?2(4?x2)(9?y2)???y???£¨1£©Çó¹ØÓÚXºÍYµÄ±ßÔµ¸ÅÂÊÃܶÈ. £¨2£©ÎÊXÓëYÊÇ·ñ¶ÀÁ¢£¿

½â (1) fX(x)??62dy?, ???x???2?????2(4?x2)(9?y2)?(4?x)????63 fY(y)??f(x,y)dx??dx?, ???y????????2(4?x2)(9?y2)?(9?y2)??f(x,y)dy???? (2) f(x,y)?fX(x)fY(y), ËùÒÔX,Y¶ÀÁ¢.?21?x?xy,0?x?1,0?y?2,3. Éè¶þÎ¬Ëæ»ú±äÁ¿(X,Y)µÄ¸ÅÂÊÃܶÈΪf?x,y??? 3?0,ÆäËü.?Ç󣺣¨1£©¹ØÓÚXºÍ¹ØÓÚYµÄ±ßÔµÃܶȺ¯Êý£¬²¢ÅжÏXÓëYÊÇ·ñÏ໥¶ÀÁ¢£¿ £¨2£©P?X?Y?1?¡£ ½â£º£¨1£©

fX?x????????2?21??22??0?x?xy?dy,0?x?1?2x?x£¬0?x?1 f?x,y?dy?????3?3??0,ÆäËü0,ÆäËü???1?21??y1x?xydx,0?y?2???£¬0?y?2? f?x,y?dx???0??3???63??ÆäËü0,ÆäËü?0,?fY?y???????ÓÉÓÚ f(x,y)?fX(x)fY(y), ËùÒÔXºÍY²»¶ÀÁ¢. £¨2£©P?X?Y?1????f?x,y?dxdy?1??dx?D01?x?1065?21?x?xydy?. ??3?72??kx(x?y),0?x?2,?x?y?x,4. Éè¶þÎ¬Ëæ»ú±äÁ¿(X,Y)µÄ¸ÅÂÊÃܶÈΪf(x,y)?? ?0,ÆäËü£¨1£©Çó³£Êýk£» £¨2£© Çó¹ØÓÚXºÍYµÄ±ßÔµ¸ÅÂÊÃܶȣ¬ £¨3£©ÎÊXÓëYÊÇ·ñ¶ÀÁ¢£¿

½â (1) ??????????f(x,y)dxdy??20?x?xkx(x?y)dxdy??20?x?x(kx2?kxy)dxdy

?1k16?8k?12x?k?1/8

(2) fX(x)?? ????11f(x,y)dy??kx(x?y)dy?2x3?x3,0?x?2,ÆäËüΪ0 ?x84?x3?,0?x?2 fX(x)??4¼´

?0,ÆäËü? y?x,0?x?2?x?y11153x?x?y?dx??y?y,?y83448211113µ±0?y?2ʱ£¬fY?y???x?x?y?dx??y?y,y8344853?11?y?y,?2?y?0?3448?13?11ÔòfY?y????y?y,0?y?23448?0£¬ÆäËü.???µ±?2?y?0ʱ£¬fY?y???2(3)ÏÔÈ»£¬f?x,y??fX?x?fY?y?£¬Òò´Ë£¬XÓëY²»Ï໥¶ÀÁ¢. 5. À×´ïµÄÔ²ÐÎÆÁÄ»µÄ°ë¾¶ÎªR£¬ÉèÄ¿±ê³öÏÖµã(X,Y)ÔÚÆÁÄ»ÉϾùÔÈ·Ö²¼£¬£¨1£©ÇóX,YµÄ±ßÔµ¸ÅÂÊÃܶȣ¬£¨2£©ÎÊX,YÊÇ·ñ¶ÀÁ¢£¿

?1/(?R2), x2?y2?R2 ½â f(x,y)??

?0, ÆäËü??(1) fX(x)??????R2?x212R2?x2?dy?, |x|?R2f(x,y)dy????R2?x2?R2?R?0, ÆäËü??222?2R?x, |y|?R ͬÀí fY(y)???R??0, ÆäËü(2) f(x,y)?fX(x)fY(y), ËùÒÔXºÍY²»¶ÀÁ¢.

?Ae?y£¬ 0?x?y6. Éè¶þÎ¬Ëæ»ú±äÁ¿(X,Y)µÄ¸ÅÂÊÃܶÈΪf(x,y)??£¬Çó£¨1£©³£ÊýA£¨2£©

?0, ÆäËüËæ»ú±äÁ¿X,YµÄ±ßÔµÃܶȣ¬£¨3£©¸ÅÂÊP(X?Y?1)¡£

½â £¨1£©??????????f£¨x,y)dxdy?A?0dx?xe?ydy?A ,µÃA?1 .

??????£¨2£©x?0, fX(x)??x?e?x, x?0?ye?y, y?0 £¬Í¬Àí fY(y)?? edy?e,fX(x)??0, x?00, y?0???y?x120(3) P(X?Y?1)?x?y?1??f(x,y)dxdy???1 1/4 dx?xedy?1?e?2e1?x?y?1?12.

7. ÒÑÖªËæ»ú±äÁ¿X,YµÄ¸ÅÂÊ·Ö²¼£º X P 0 1/2 1 1/4

Y P 0 1/2 1 1/2 ÇÒP(XY?0)?1.£¨1£©ÇóX,YµÄÁªºÏ·Ö²¼£¬£¨2£©ÎÊX,YÊÇ·ñ¶ÀÁ¢£¿ÎªÊ²Ã´£¿ ½â ÒòΪ P(XY?0)?1, ËùÒÔ,ÓÐ P(X??1,Y?1)?P(X?1,Y?1)?0,

£¨1£©ÉèX,YµÄÁªºÏ·Ö²¼Îª

Y X 0 1 Pi. -1 P11 0 1/4 0 P21 P22 1/2 1 P31 0 1/4 P£®j 1/2 1/2 1 Ôò p11?0.25,p31?0.25,p22?0.5, ÓÉÓÚp21?p22?0.5,¹Ê p21?0.5?0.5?0 Òò´Ë,(X,Y)µÄÁªºÏ·Ö²¼ÂÉΪ

Y X 0 1 -1 1/4 0 0 0 1/2 1 1/4 0

(2) ÓÉÓÚp21?0?0.5?0.5, ¹Ê XÓëY²»Ï໥¶ÀÁ¢.

8. ÉèXÓëYΪÁ½¸öÏ໥¶ÀÁ¢µÄËæ»ú±äÁ¿£¬XÔÚÇø¼ä?0,1?ÉÏ·þ´Ó¾ùÔÈ·Ö²¼£¬YµÄ¸ÅÂÊÃܶÈΪ

?1?y/2?e,fY?y???2??0,y?0,y?0.£¬Çó£º

£¨1£©XÓëYµÄÁªºÏ¸ÅÂÊÃܶȣ»

2£¨2£©É躬ÓÐaµÄ¶þ´Î·½³ÌΪa?2Xa?Y?0£¬ÊÔÇóaÓÐʵ¸ùµÄ¸ÅÂÊ¡£

½â£º£¨1£©