五、例习题分析
例1(P83例2)
分析:⑴了解方位角,及方位名词;
⑵依题意画出图形;
⑶依题意可得PR=1231.5=18,PQ=1631.5=24, QR=30;
⑷因为242+182=302,PQ2+PR2=QR2,根据勾股定理 的逆定理,知∠QPR=90°; ⑸∠PRS=∠QPR-∠QPS=45°。
小结:让学生养成“已知三边求角,利用勾股定理的逆定理”的意识。
例2(补充)一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,请你试判断这个三角形的形状。 分析:⑴若判断三角形的形状,先求三角形的三边长;
⑵设未知数列方程,求出三角形的三边长5、12、13;
⑶根据勾股定理的逆定理,由52+122=132,知三角形为直角三角形。 解略。 六、课堂练习
1.小强在操场上向东走80m后,又走了60m,再走100m回到原地。小强在操场上向东走了80m后,又走60m的方向是 。
2.如图,在操场上竖直立着一根长为2米的测影竿,早晨测得它的影长为4米,中午测得它的影长为1米,则A、B、C三点能否构成直角三角形?为什么?
3.如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的A、B两个基地前去拦截,六分钟后同时到达C地将其拦截。已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西40°,问:甲巡逻艇的航向? 七、课后练习
1.一根24米绳子,折成三边为三个连续偶数的三角形,则三边长分别为 ,此三角形的形状为 。
2.一根12米的电线杆AB,用铁丝AC、AD固定,现已知用去铁丝AC=15米,AD=13米,又测得地面上B、C两点之间距离是9米,B、D两点之间距离是5米,则电线杆和地面是否垂直,为什么?
3.如图,小明的爸爸在鱼池边开了一块四边形土地种了一些蔬菜,爸爸让小明计算一下土地的面积,以便计算一下产量。小明找了一卷米尺,测得AB=4米,BC=3米,CD=13米,DA=12米,又已知∠B=90°。 八、参考答案: 课堂练习:
1.向正南或正北。
2.能,因为BC2=BD2+CD2=20,AC2=AD2+CD2=5,AB2=25,所以BC2+AC2= AB2;
3.由△ABC是直角三角形,可知∠CAB+∠CBA=90°,所以有∠CAB=40°,航向为北偏东50°。 课后练习:
1.6米,8米,10米,直角三角形;
2.△ABC、△ABD是直角三角形,AB和地面垂直。
3.提示:连结AC。AC2=AB2+BC2=25,AC2+AD2=CD2,因此∠CAB=90°, S四边形=S△ADC+S△ABC=36平方米。
18.2 勾股定理的逆定理(三)
一、教学目标
1.应用勾股定理的逆定理判断一个三角形是否是直角三角形。 2.灵活应用勾股定理及逆定理解综合题。
3.进一步加深性质定理与判定定理之间关系的认识。 二、重点、难点
1.重点:利用勾股定理及逆定理解综合题。 2.难点:利用勾股定理及逆定理解综合题。 3.难点的突破方法:
⑴研究四边形的问题,通常添置辅助线把它转化为研究三角形的问题。 ⑵构造勾股数,利用勾股定理的逆定理证明三角形是直角三角形,在利用勾股定理进行计算。
⑶注意给学生归纳总结数学思想方法在题目中应用的规律。
⑷优化训练,在不条件、不同环境中反复运用定理,使学生达到熟练使用,灵活运用的程度。
三、例题的意图分析
例1(补充)利用因式分解和勾股定理的逆定理判断三角形的形状。
例2(补充)使学生掌握研究四边形的问题,通常添置辅助线把它转化为研究三角形的问题。本题辅助线作平行线间距离无法求解。创造3、4、5勾股数,利用勾股定理的逆定理证明DE就是平行线间距离。
例3(补充)勾股定理及逆定理的综合应用,注意条件的转化及变形。 四、课堂引入
勾股定理和它的逆定理是黄金搭档,经常综合应用来解决一些难度较大的题目。 五、例习题分析
例1(补充)已知:在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,满足a2+b2+c2+338=10a+24b+26c。 试判断△ABC的形状。
分析:⑴移项,配成三个完全平方;⑵三个非负数的和为0,则都为0;⑶已知a、b、c,利用勾股定理的逆定理判断三角形的形状为直角三角形。
例2(补充)已知:如图,四边形ABCD,AD∥BC,AB=4,BC=6,CD=5,AD=3。 求:四边形ABCD的面积。
分析:⑴作DE∥AB,连结BD,则可以证明△ABD≌△EDB(ASA);
⑵DE=AB=4,BE=AD=3,EC=EB=3;⑶在△DEC中,3、4、5勾股数,△DEC为直角三角形,DE⊥BC;⑷利用梯形面积公式可解,或利用三角形的面积。
例3(补充)已知:如图,在△ABC中,CD是AB边上的高,且CD2=AD2BD。 求证:△ABC是直角三角形。
分析:∵AC2=AD2+CD2,BC2=CD2+BD2
∴AC2+BC2=AD2+2CD2+BD2 =AD2+2AD2BD+BD2 =(AD+BD)2=AB2
六、课堂练习
1.若△ABC的三边a、b、c,满足(a-b)(a2+b2-c2)=0,则△ABC是( ) A.等腰三角形; B.直角三角形;
C.等腰三角形或直角三角形;
D.等腰直角三角形。
2.若△ABC的三边a、b、c,满足a:b:c=1:1:,试判断△ABC的形状。 3.已知:如图,四边形ABCD,AB=1,BC=,CD=,AD=3,且AB⊥BC。 求:四边形ABCD的面积。
4.已知:在△ABC中,∠ACB=90°,CD⊥AB于D,且CD2=AD2BD。
求证:△ABC中是直角三角形。 七、课后练习,
1.若△ABC的三边a、b、c满足a2+b2+c2+50=6a+8b+10c,求△ABC的面积。 2.在△ABC中,AB=13cm,AC=24cm,中线BD=5cm。 求证:△ABC是等腰三角形。
3.已知:如图,∠1=∠2,AD=AE,D为BC上一点,且BD=DC,AC2=AE2+CE2。 求证:AB2=AE2+CE2。4.已知△ABC的三边为a、b、c,且a+b=4,ab=1,c=,试判定△ABC的形状。 八、参考答案: 课堂练习: 1.C;
2.△ABC是等腰直角三角形; 3.
4.提示:∵AC2=AD2+CD2,BC2=CD2+BD2,∴AC2+BC2=AD2+2CD2+BD2= AD2+2AD2BD+BD2=(AD+BD)2=AB2,∴∠ACB=90°。 课后练习: 1.6;
2.提示:因为AD2+BD2=AB2,所以AD⊥BD,根据线段垂直平分线的判定可知AB=BC。 3.提示:有AC2=AE2+CE2得∠E=90°;由△ADC≌△AEC,得AD=AE,CD=CE,∠ADC=∠BE=90°,根据线段垂直平分线的判定可知AB=AC,则AB2=AE2+CE2。
2
4.提示:直角三角形,用代数方法证明,因为(a+b)=16,a2+2ab+b2=16,ab=1,所以a2+b2=14。又因为c2=14,所以a2+b2=c2 。
第十九章 平行四边形
19.1.1 平行四边形及其性质(一)
一、
教学目标:
1. 理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.
2. 会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证. 3. 培养学生发现问题、解决问题的能力及逻辑推理能力. 二、
重点、难点
1. 重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用. 2. 难点:运用平行四边形的性质进行有关的论证和计算. 3. 难点的突破方法:
本节的主要内容是平行四边形的定义和平行四边形对边相等、对角相等的性质.这一节是全章的重点之一,学好本节可为学好全章打下基础.
学习这一节的基础知识是平行线性质、全等三角形和四边形,课堂上可引导学生回忆有关知识.
平行四边形的定义在小学里学过,学生是不生疏的,但对于概念的本质属性的理解并不深刻,所以这里并不是复习巩固的问题,而是要加深理解,要防止学生把平行四边形概念当作已知,而不重视对它的本质属性的掌握.
为了有助于学生对平行四边形本质属性的理解,在讲平行四边形定义前,要把平行四边形的对边、对角让学生认清楚.
讲定义时要强调“四边形”和“两组对边分别平行”这两个条件,一个“四边形”必须具备有“两组对边分别平行”才是平行四边形;反之,平行四边形,就一定是有“两组对边分别平行”的一个“四边形”.要指出,定义既是平行四边形的一个判定方法,又是平行四边形的一个性质.
新教材是先让学生用观察、度量和猜想的方法得到平行四边形的对边相等、对角相等这两条性质的,然后用两个三角形全等,证明了这两条性质.这有利于培养学生观察、分析、猜想、归纳知识的自学能力.
教学中可以通过大量的生活中的实例:如推拉门、汽车防护链、书本等引入新课,使学生在已有的知识和认知的基础上去探索数学发展的规律,达到用问题创设数学情境,提高学生学习兴趣.
然后让学生通过具体问题的观察、猜想出一些不同于一般四边形的性质,进一步由学生归纳总结得到平行四边形的性质.同时教师整理出一种推导平行四边形性质的范式,让学生在教师的范式的诱导下,初步达到演绎数学论证过程的能力.
最后通过不同层次的典型例、习题,让学生自己理解并掌握本节课的知识. 三、例题的意图分析
例1是教材P93的例1,它是平行四边形性质的实际应用,题目比较简单,其目的就是让学生能运用平行四边形的性质进行有关的计算,讲课时,可以让学生来解答.例2是补充的一道几何证明题,即让学生学会运用平行四边形的性质进行有关的论证,又让学生从较简单的几何论证开始,提高学生的推理论证能力和逻辑思维能力,学会演绎几何论证的方法.此题应让学生自己进行推理论证. 四、课堂引入
1.我们一起来观察下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象?
平行四边形是我们常见的图形,你还能举出平行四边形在生活中应用的例子吗? 你能总结出平行四边形的定义吗?
(1)定义:两组对边分别平行的四边形是平行四边形. (2)表示:平行四边形用符号“”来表示.
如图,在四边形ABCD中,AB∥DC,AD∥BC,那么四边形ABCD是平行四边形.平行四边形ABCD记作“ABCD”,读作“平行四边形ABCD”.