电子测量技术基础课后习题答案-张永瑞(第二版) 下载本文

习 题 三

3.1 如何按信号频段和信号波形对测量用信号源进行分类? 答:按信号频段的划分,如下表所示: 名 称 超低频信号发器 低频信号发生器 视频信号发生器 高频信号发生器 甚高频信号发生器 超高频信号发生器 频 率 范 围 30kHz以下 30kHz~300kHz 300kHz~6MHz 6MHz~30MHz 30MHz~300MHz 300MHz~3000 MHz 主 要 应 用 领 域 电声学、声纳 电报通讯 无线电广播 广播、电报 电视、调频广播、导航 雷达、导航、气象 按输出信号波形分类:

可分为正弦信号发生器和非正弦信号发生器。非正弦信号发生器又可包括:脉冲信号发生器、函数信号发生器、扫频信号发生器、数字序列信号发生器、图形信号发生器、噪声信号发生器等。

3.2 正弦信号发生器的主要性能指标有哪些?各自具有什么含义? 答:正弦信号发生器的主要性能指标及各自具有的含义如下: (1)频率范围

指信号发生器所产生的信号频率范围。 (2)频率准确度

频率准确度是指信号发生器度盘(或数字显示)数值与实际输出信号频率间的偏差,通常用相对误差表示:

?=f0-f1?100% f1式中f0为度盘或数字显示数值,也称预调值,f1是输出正弦信号频率的实际值。 (3)频率稳定度

其他外界条件恒定不变的情况下,在规定时间内,信号发生器输出频率相对于预调值变化的大小。按照国家标准,频率稳定度又分为频率短期稳定度和频率长期稳定度。频率短期稳定度定义为信号发生器经过规定的预热时间后,信号频率在任意15min内所发生的最大变化,表示为:

?=fmax-fmin?100% f0频率长期稳定度定义为信号发生器经过规定的预热时间后,信号频率在任意3h内所发生的最大变化,表示为:

预调频率的 x310-6+yHz

式中x、y是由厂家确定的性能指标值。

(4)由温度、电源、负载变化而引起的频率变动量

由温度、电源、负载变化等外界因素造成的频率漂移(或变动)即为影响量。 ① 温度引起的变动量

环境温度每变化1℃所产生的相对频率变化,表示为:预调频率的x210-6/℃,即

12

(f1-f0)?106?=?10?6/℃

f0??t式中△t为温度变化值,f0为预调值, f1为温度改变后的频率值。 ② 电源引起的频率变动量

供电电源变化±10%所产生的相对频率变化,表示为:x·10-6,即

(f1-f0)?106?=?10?6

f0③ 负载变化引起的频率变动量

负载电阻从开路变化到额定值时所引起的相对频率变化,表示为: x·10-6,即

(f2-f1)?106?=?10?6

f1式中f1为空载时的输出频率,f2为额定负载时的输出频率。 (5)非线性失真系数(失真度)

用信号频谱纯度来说明输出信号波形接近正弦波的程度,并用非线性失真系数 r 表示: 式中U1为输出信号基波有效值,U2、U3 …… Un 为各次谐波有效值。

22U2+U32+…+Unr=?100%

U1由于U2、U3 …… Un 等较U1小得多,为了测量上的方便,也用下面公式定义r:

r=22U2+U32+…+UnU+U+…+U21222n?100%

(6)输出阻抗

信号发生器的输出阻抗视其类型不同而异。低频信号发生器电压输出端的输出阻抗一般600Ω (或1kΩ),功率输出端依输出匹配变压器的设计而定,通常50Ω、75Ω、150Ω、600Ω和5kΩ等档。高频信号发生器一般仅有50Ω或75Ω档。

(7)输出电平

输出电平指的是输出信号幅度的有效范围。 (8)调制特性

当调制信号由信号发生器内部产生时,称为内调制,当调制信号由外部加到信号发生器进行调制时,称为外调制。

3.3 文氏桥振荡器的振荡原理是什么?

答:是文氏桥振荡器传输函数的幅频特性和相频特性分别为:

N?ω?=N?jω?=1?ωω?32+?-0??ω0ω?2

??ω?=-arctg????ωω??-0?/3? ??ω0ω??当ω=ω0=1/RC,或 f=f0=1/2πRC 时,输出信号与输入信号同相,且此时传输函数

13

模 N(ω0)=N(ω)max=1/3最大,如果输出信号U0后接放大倍数KV=N(ω0)=3的同相放大器,那么就可以维持ω=ω0 或者f= f0=1/2πRC 的正弦振荡,而由于RC网络的选频特性,其他频率的信号将被抑制。

3.4 某文氏桥只C振荡器如题3.4图所示,其中R3、R4是热敏电阻,试确定它们各自应具有什么性质的温度系数。

答:R3应具有正性质的温度系数, R4应具有负性质的温度系数。

题3.4图

3.5 差频式振荡器作低频信号发生器振荡源的原理和优点是什么?

答:差频式振荡器的可变频率振荡器和固定 频率振荡器分别产生可变频率的高频振荡 f1 和固定频率的高频振荡 f2 ,经过混频器M产生两者差频信号 f =f1 – f2。这种方法的主要缺点是电路复杂,频率准确度、稳定度较差,波形失真较大;最大的优点是容易做到在整个低频段内频率可连续调节而不用更换波段,输出电平也较均匀,所以常用在扫频振荡器中。

3.6 XD-1型低频信号发生器表头指示分别为2V和 5V,当输出衰减旋钮分别指向下列各位置时,实际输出电压值为多大? 电平0dB 10dB 20dB 30dB 40dB 50dB 60dB 70dB 80dB 90dB 表 头指示 倍 数 2 V 5 V 1 2 5 3.16 0.63 1.58 10 0.2 0.5 31.62 100 316 0.0158 1000 0.005 3160 104 3.16×104 0.063 0.02 6.3×10-3 2×10-3 6.3×10-4 2×10-4 6.3×10-5 0.158 0.05 0.00158 5×10-4 1.5810-4 3.7 结合图3.3—11,说明函数信号发生器的工作原理和过程。欲产生正向锯齿波,图

中二极管应如何联接?

答:正向锯齿波充电电压增大的时间长,放电电压减少的时间短,在R两端并联的二二极管左端为正,右端为负。

t1=(R//RCRCD)Um t1>t2 为正向锯齿波。 Um t2=?E?E3.8 说明图3.3-14所示XD8B框图中RP 4和RP 2两个电位器的功能。

答:RP4调频率,RP2波形选择。

3.9 说明图3.4-1高频信号发生器各单元的主要作用。

答:振荡器产生高频等幅振荡信号,调频器产生高频调频信号,内调制信号振荡器产生低频等幅振荡信号,缓冲放大器放大高频等幅振荡信号或高频调频信号,同时还起缓冲隔离作用,调制度计显示调制度计的大小,电子电压表显示缓冲放大器输出电压的大小,步进衰减输出级衰减缓冲放大器输出电压使之满足输入电路对输入电压大小的要求,电源的作用是为高频信号发生器各单元电路提供合适的工作电压和电流。

14

3.10 调谐式高频振荡器主要有哪三种类型?振荡频率如何确定和调节?

答:调谐信号发生器的振荡器通常为LC振荡器,根据反馈方式,又可分为变压器反馈式、电感反馈式(也称电感三点式或哈特莱式)及电容反馈式(也称电容三点式或考毕兹式)三种振荡器形式。

变压器反馈式振荡器的振荡频率:f0=12?LC

电感反馈式振荡器的振荡频率:f0=1

2?(L1+L2)C12?LC1C2C1+C2 电容反馈式振荡器的振荡频率:f0=通常用改变电感L来改变频段,改变电容C进行频段内频率细调。

3.11 题3.11图是简化了的频率合成器框图,f1为基准频率, f2为输出频率,试确定两者之间的关系。若f1 =1MHz,分频器÷n和÷m中n、m可以从1变到10,步长为1,试确定f2的频率范围。

题3.11图

解:相位锁定时:f1/n=f2/m ∴ f2=f12m/n

当 m=1 n=10时 f2min=f1/10=0.1MHz 当 m=10 n=1时 f2max=10f1=10MHz

3.12 解释下列术语:频率合成,相干式频率合成,非相干式频率合成。

答:频率合成是把一个(或少数几个)高稳定度频率源fs经过加、减、乘、除及其组合运算,以产生在一定频率范围内,按一定的频率间隔(或称频率跳步)的一系列离散频率的信号。

相干式频率合成器:只用一个石英晶体产生基准频率,然后通过分频、倍频等,加入混频器的频率之间是相关的。

非相干式直接合成器:用多个石英晶体产生基准频率,产生混频的两个基准频率之间相互独立。

3.13 说明点频法和扫频法测量网络频率特性的原理和各自特点。

答:点频法测量网络频率特性的原理就是“逐点”测量幅频特性或相频特性。

其特点是:原理简单,需要的设备也不复杂。但由于要逐点测量,操作繁琐费时,并且由于频率离散而不连续,非常容易遗漏掉某些特性突变点,而这常常是我们在测试和分析电路性能时非常关注的问题。另外当我们试图改变电路的结构或元件参数时,任何改变都必然导致重新逐点测量。

扫频法测量网络频率特性的原理就是在测试过程中,使信号源输出信号的频率按特定规律自动连续并且周期性重复,利用检波器将输出包络检出送到示波器上显示,就得到了被测

15