机车车辆传动与控制 下载本文

器、直流中间环节、电动机侧逆变器及控制装置组成。整流器的作用是把来自接触网的单相交流电压变换为直流。直流中间环节由滤波电容器或电感组成,其作用是储能和滤波,获得平直的直流电。逆变器的作用是将中间环节平直的直流电,通过一定的控制策略,变换为频率、电压可调的三相脉冲交流电,供给交流牵引电动机,通过能量转换驱动列车。 根据中间直流环节滤波元件的不同,牵引变流器可分为电压型和电流型两种。电流型牵引变流器直流中间环节的储能器采用电感,相当于恒流源,向逆变器输出的是恒定的直流电流。

9.两电平式逆变器:逆变器将直流转换为交流。两电平式逆变器,把直流中间环节的正极电位或负极电位接到电动机上,即逆变器的输出相电压为两种电平。

10.(异步牵引电动机)恒磁通调速:根据交流电动机定子绕组感应电势公式

当电源电压一定时,如果降低频率,则主磁通要增大,基频(额定频率)以下主磁通增加势必使主磁路过饱和,励磁电流增加,铁心损耗也相应增加,这是不允许的。为此调频时一定要调节电势,保持感应电势与频率的比值不变,即可保持主磁通不变。

11.(异步牵引电动机)恒功率调速:在恒磁通控制中,随着频率和转速的上升,电压U1也相应提高,牵

引电动机的输出功率增大,但电压的提高受到电动机功率或逆变器最大电压的限制。通常调节频率大于基准频率f1>f1N时,即当电压提高到一定数值后维持不变或将不再正比于f1上升,此后电动机磁通开始减小,

将进入恒功率控制方式。由于

由此可见,电动机按恒功率运行,电压与频率的调节可采用两种不同的方式,即U1=C,s=C的调节方式和f2=C,U12/f 1=C的调节方式。 12.间接矢量控制:根据有无磁链的闭环控制,矢量控制系统可分为直接矢量控制系统和间接矢量控制系

统。间接矢量控制,也称转差频率矢量控制或磁场前馈控制,系统中无磁链闭环,属于开环控制系统。转矩和磁链的幅值、相位角通过控制系统给定值计算出来,由矢量控制方程保证。它既保持了稳态模型转差频率控制系统的优点,又利用基于动态模型的矢量控制规律,克服了其大部分不足。目前,高速列车一般采用间接矢量控制策略。 二、简答题:

1.试分析并联运行时串励牵引电动机、并励牵引电动机的负载分配情况。

答:牵引电动机并联运行时,为了能充分利用机车功率,要求各牵引电动机的负载分配要均匀。但是,由于各牵引电动机的特性有差异,以及机车动轮直径不完全相同等原因,实际上各牵引电动机负载分配是不均匀的。

图1所示为牵引电动机特性有差异时的负载分配情况。从图中可以看出两台特性稍有差异的串励(或并励)牵引电动机,装在一台机车上并联运行时,即使动轮直径相同,电机转速相同,电动机的负载电流和转矩均有差别。由图1(a)中可以看出,串励牵引电动机具有较软的特性,在同一运行速度下的负载电流Il和I2差值比较小。并励牵引电动机特性较硬,

如图1(b)所示,负载电流I1和I2差值要比串励牵引电动机大得多。 如果两台牵引电动机的特性完全相同,而各自驱动的动轮直径稍有不同,机车运行时两台电动机的转速将产生差异,如图2所示。设一台电动机转速为n1,另一台电动机转速为n2,由相同转速差异引起的负载电流Il和I2的差值,串励牵引电动机比并励牵引电动机小。 图1 牵引电动机特性有差异时的负载分配 (a)串励;(b)并励

图2 动轮直径有差异时牵引电动机的负载分配 (a)串励;(b)并励。

2.简述直流牵引电动机的调速方式。 答:根据直流牵引电动机转速表达式: 'UaRa?RSUaRan??Ia??Ia Ce?Ce?Ce?Ce?

可知,直流牵引电动机的调速可通过改变电枢两端电压和减小磁通来实现,即改变电枢电压调速和弱磁调速。 (1)改变电枢电压调速

由上式可知:当负载一定时,若忽略电枢回路的电阻压降,可以认为电动机的转速与电枢端电压成正比,提高电枢端电压将提高转速。电枢端电压的提高是以额定电压为限值的,对应的转速为调节电压所能达到的最高转速,即改变电枢端电压调速是以额定电压对应转速为最高转速的调速方法。 改变电压调速时的速率特性如图1所示。 图1 牵引电动机调电压时的速率特性 (2)弱磁调速

当调压资源用尽后才能开始实施磁削(磁场削弱)调速,即进行磁削调速时,电源电压已达到最大值且保持不变。若不考虑电枢回路的电阻压降,则有

n?Uan1?2 ,?Ce?n2?1

即磁削后电动机转速升高,转速与磁通基本成反比关系。

磁削后的转速都高于额定磁场时的转速,磁削后的人为特性总是处于固有特性(额定磁通之特性)的上方。

弱磁调速就是以额定电压、额定磁通对应的转速为最低转速的一种调速方法,磁通越小,转速越高。磁削时的速率特性如图2所示。 图2 牵引电动机磁削时的速率特性

3.分析相控电力机车传动系统电气线路的类型及作用。

答:相控电力机车传动系统电气线路按其功能作用可分为主电路、辅助电路和控制电路三大部分。 电力机车主电路是高电压、大电流的大功率动力回路,是产生牵引力和制动力的主体电路,具有功率大、控制复杂、工作条件恶劣及空间受限制等特点。主电路的结构、性能在很大程度上决定着电力机车的性能、成本等技术经济指标。主电路由受电弓、主断路器、避雷器、高压电流互感器、牵引变压器、牵引变流装置、牵引电动机、平波电抗器、制动电阻及其相连接的电气开关元件等组成,它应满足机车启动、调速及制动三个基本工作状态的要求。

辅助电路主要由提供三相交流电的劈相装置和各种辅助机械拖动电动机等组成。劈相装置就是一个单-三相交流电源变换装置,一般有旋转机组劈相机和静止变流劈相机两种形式,国产SS系列电力机车主要采用旋转