物理化学习题解答(三) 下载本文

物理化学习题解答(三)

习题 p200~203 1.

有5mol某双原子理想气体,已知其Cv,m=2.5R,从始态400K,200kPa,经

绝热可逆压缩至400kPa后,再真空膨胀至200kPa,求整个过程的Q,W,ΔU,ΔH和ΔS。 解:

(1) 绝热可逆:Q1=0,ΔS1=0,W1=ΔU1。

T1γp11-γ=T2γp21-γ,(T2/T1) γ=( p1/p2) 1-γ,γln(T2/T1)=( 1-γ)ln( p1/p2) ln(T2/T1)=( 1/γ-1)ln( p1/p2)= ( 5/7-1)ln(200/400)= 0.198042 T2=T1exp(0.198042)=400exp(0.198042)=487.6K

W1=ΔU1=nCv,m(T2-T1)=5×2.5×8.314×(487.6-400)=9103.83J ΔH1=nCp,m(T2-T1)=5×3.5×8.314×(527.8-400)=12745.36J (2) 真空膨胀:Q2=0,W2=ΔH2=ΔU2=0。 设计等温可逆过程:

ΔS2=nRln(p1/p2)=5×8.314×ln(400/200)=28.81 J.K-1 整个过程:Q=Q1+Q2=0,W=W1+W2=W1=9103.83J ΔU=ΔU1+ΔU2=ΔU1=9103.83J ΔH=ΔH1+ΔH2=ΔH1=12745.36J ΔS=ΔS1+ΔS2=ΔS2=28.81 J.K-1

2.

有5molHe(g),可看作理想气体,已知其Cv,m=1.5R,从始态273K,100kPa,

变到终态298K,1000kPa,计算该过程的熵变ΔS。 解:

(1) 设计等温可逆过程:273K,100kPa→273K,1000kPa ΔS1=nRln(p1/p2)=5×8.314×ln(100/1000)= -95.72J.K-1 (2) 设计等压可逆过程:273K,1000kPa→298K,1000kPa

ΔS2=nCp,mln(T2/T1)=5×2.5×8.314ln(298/273)= 9.106J.K

-1

则:273K,100kPa→298K,1000kPa

ΔS=ΔS1+ΔS2=-95.72+9.106=-86.61 J.K-1

3.

在绝热容器中,将0.10kg、283K的水与0.20kg、313K的水混合,求混合过

程的熵变ΔSmix。设水的平均比热为4.184kJ.K-1.kg-1。

解:设终态温度为TK,则:0.10kg、283K,H2O(l)→H2O(l),0.10kg、TK

Q1=C(T-283)=0.1×4.184×(T-283)

0.20kg、313K, H2O(l)→H2O(l),0.20kg、TK

Q2=C(T-283)=0.2×4.184×(T-313)

Q=Q1+Q2=0,0.1×4.184×(T-283)= -0.2×4.184×(T-313) 0.3×4.184T=0.1×4.184×283+0.2×4.184×313=4.184×90.9 0.3T=90.9,T=303K

ΔS1=ClnT2/T1=0.10×4.184×103 ln303/283=28.57 J.K-1 ΔS2=ClnT2/T1=0.20×4.184 ×103ln303/313= -27.17J.K-1 ΔSmix=ΔS1+ΔS2=28.57-27.17= 1.40 J.K-1

4.

在298K的等温情况下,在一个中间有导热隔板分开的盒子中,一边放

0.2molO2(g),压力为20kPa,另一边放0.8molN2(g),压力为80kPa,抽去隔板使两种气体混合,试求: (1) 混合后,盒子中的压力;

(2) 混合过程中的Q,W,ΔU,ΔS和ΔG;

(3) 如果假设在等温情况下,使混合后的气体再可逆地回到始态,计算该过程的Q和W的值。 解:

(1) p总×(VO2+VN2)=n总RT,pO2×VO2=nO2RT,pN2×VN2=nN2RT p总= n总RT/(nO2RT1/pO2+ nN2RT/pN2)=n总/(nO2/pO2+ nN2/pN2) =1/(0.2/20+0.8/80)=50kPa (2) ∵等温,∴ΔU=0,ΔH=0,故:Q=-W ∵ΔV=0,∴Q= -W=0

为了计算状态函数,设计如下可逆途径:

(a) O2(298K、V 、20kPa)→O2(298K、2V 、10kPa),等温可逆

WO2,r= -nO2RTlnV2/V1= -0.2×8.314×298×ln2= -343.46J QO2,r= -WO2=343.46J

ΔSO2= QO2/T =343.46/298=1.1526JK

ΔGO2= -nO2RTlnV2/V1= -0.2×8.314×298×ln2= -343.46J

(b) (N2(298K、V 、80kPa)→O2(298K、2V 、40kPa)

WN2,r= -nN2RTln V2/V1= -0.8×8.314×298×ln2= -1373.85J QN2,r= -WN2= 1373.85J ΔSN2= QN2,r/T =4.6103J/K

ΔGN2= -nN2RTV2/V1= -0.8×8.314×298×ln2= -1373.85J ΔS=ΔSO2+ΔSN2=5.763J/K

ΔG=ΔGO2+ΔGN2= -1717.3J

(3)∵等温可逆,∴ΔU=0,ΔH=0,ΔS= -5.7627J/K,ΔG=1717.3J

故:–W=Q= TΔS= -5.7627×298= -1717.3J

5.

有一绝热箱子,中间用绝热板把箱子一分为二,一边放1mol300K、100kPa

的单原子气体Ar(g),另一边放2mol400K、200kPa的双原子理想气体N2(g),若把绝热板抽去,让两种气体混合达平衡,求混合过程的熵变ΔSmix。 解:

将绝热板抽去后,Ar和N2的温度和体积都发生变化。 ∵ΔV=0,∴过程是绝热恒容过程,热容要用定容热容Cv,m: n N2Cv,m(400-T)=nArCv,m(T-300),2×2.5R×(400-T)=1×1.5R×(T-300) 2000-5T=1.5T-450,6.5T=2450,T=2450/6.5=376.92K

VN2=nN2RT/ pN2=2×8.314×400/200=33.256dm3 VAr=nArRT/ pN2=1×8.314×300/100=24.942dm3 V总= VN2+VAr=33.256+24.942=58.198 dm3 ΔSN2=n N2Rln(V总/VN2)+ n N2 Cv,m ln(T/TN2)

=2×8.314×ln(58.198/33.256)+ 2×2.5×8.314×ln(376.92/400)=6.834 J.K-1 ΔSAr=n ArRln(V总/VAr)+ n Ar Cv,m ln(T/TAr)

=1×8.314×ln(58.198/24.942)+ 1×1.5×8.314×ln(376.92/300)=9.891 J.K-1 ΔSmix=ΔSN2+ΔSAr =6.834+9.891=16.725 J.K-1

6.

解:

有2mol理想气体,从始态300K、20dm3,经下列不同过程等温膨胀至50 dm3,

计算各过程的Q,W,ΔU,ΔH和ΔS。

(1) ∵等温可逆,∴ΔU=0,ΔH=0,故:Q= -W W= -nRTlnV2/V1=2×8.314×300ln50/20= -4570.82J ΔS=Q/T=4570.82/300=15.324J.K-1

(2) ∵真空膨胀,∴ΔU=0,ΔH=0,Q= -W=0,ΔS=15.324J.K-1 (3) ∵等温恒外压,∴ΔU=0,ΔH=0

W= -pe(V2-V1)= -100×103×(50-20)×10-3= -3000J Q= -W=3000J,ΔS=15.324J.K-1

7.

有1mol甲苯CH3C6H5(l)在其沸点383.2K时蒸发为气体,计算该过程的Q,

W,ΔU,ΔH,ΔS,ΔA和ΔG。已知在该温度下,甲苯的汽化热为362kJ.kg-1。 解: (383.2K,p )CH3C6H5(l) M甲苯=92.14×10-3kg.mol-1 Qp=92.14×10-3×362=33.355 kJ

W=-pe(V2-V1)= -p(Vg-Vl)≈-pVg=-nRT=-1×8.314×383.2×10-3=-3.186 kJ ΔvapHm=33.355 kJ.mol-1

CH3C6H5(g) (383.2K,p )

ΔvapUm=Q+W=33.355-3.186=30.169kJ.mol-1 ΔvapSm=ΔvapHm/T=33.355×103/383.2=87.04 J.K-1.mol-1 ΔvapGm=0(可逆相变)

ΔvapAm=ΔvapUm -TΔvapSm =W=-3.186 kJ.mol-1

8.

在一个绝热容器中,装有298K的H2O(l)1.0kg,现投入0.15kg冰,计算该过

程的熵变。已知H2O(s)的熔化焓为333.4J.g-1,H2O(l)的平均比热容为4.184 J.K-1.g-1。 解:

(a) (0.15kg,273K) H2O(S)→H2O(l)(0.15kg,273K) 等温等压可逆相变

Q1=ΔH1=mΔfusH =0.15×103g×333.4J.g-1=50.01kJ ΔS1=Q1/T=50010/273=183.19J.K-1

(b) Q1+m1Cp(T-273)=m2Cp(298-T)

50010+150×4.184(T-273)=1000×4.184 (298-T),T=284.34K (0.15kg,273K) H2O(l)→H2O(l)(0.15kg,TK) 等压可逆 ΔS2= ? mC p / TdT 103×4.184ln(284.34/273) ?m Cp lnT2/T1=0.15×

T1T2=25.54J/K

(c) (1.0kg,298K) H2O(l)→H2O(l)(1.0kg,TK) 等压可逆

ΔS3= ? mC p / TdT 103×4.184ln(284.34/298) ?mCp lnT2/T1=1.0×

T1T2= -196.32J.K-1

故:ΔS=ΔS1+ΔS2+ΔS3=183.19+25.54-196.32=12.41J.K-1

9.

实验室中有一个大恒温槽的温度为400K,室温为300K,因恒温槽绝热不良

而有4.0kJ的热传给了室内的空气,用计算说明这一过程是否可逆。 解: Q= -4000J,ΔSsys=Q/Tsys= -4000/400=-10 J.K-1 ΔSsub=-Q/T= 4000/300=13.33J.K-1

ΔSiso=ΔSsys +ΔSsub=-10+13.33=3.33 J.K-1>0,该过程为不可逆。

10. 有1mol过冷水,从始态263K,101kPa变成同温同压的冰,求该过程的熵变。

并用计算说明这一过程的可逆性。已知水和冰在该温度范围内的平均摩尔定压热容分别为Cp,m(H2O,l)=75.3 J.K-1.mol-1,Cp,m(H2O,s)=37.7 J.K-1.mol-1;在273K,101kPa时水的摩尔凝固热为ΔfusHm(H2O,s)=-5.90kJ.mol-1。可逆相变 解:

ΔS1=nCp,mln(T2/T1)=75.3×ln(373/263)= 26.31 J.K-1.mol-1 ΔfusSm(373)=-5.90/373=-15.82J.K-1.mol-1

ΔS3=nCp,mln(T2/T1)=37.7×ln(263/373)= -13.17 J.K-1.mol-1 ΔS=ΔS1+ΔfusSm(373)+ΔS3= 26.31-15.82-13.17=-2.68 J.K-1.mol-1 ΔH1=nCp,m(T2-T1)=75.3×(373-263)= 8.283 kJ.mol-1 ΔfusHm(373)=-5.90kJ.mol-1

ΔH3=nCp,m(T2-T1)=37.7×(263-373)= -4.147kJ.mol-1

ΔH=ΔH1+ΔfusHm(373)+ΔH3=8.283-5.90 -4.147=-1.764 kJ.mol-1 ΔG=ΔH-TΔS=-1.764×103-263×(-2.68) =-1059.16 J.mol-1<0 该过程是自发的,即不可逆。

11. 1molN2(g)可看作是理想气体,从始态298K,100kPa,经如下两个等温过程,

分别到达乡终态压力为600kPa,分别求过程的Q,W,ΔU,ΔH,ΔA,ΔG,ΔS和ΔSiso。

(1) 等温可逆压缩;

(2) 等外压为600kPa时压缩。

解:

(1) ∵等温可逆,∴ΔU=0,ΔH=0

W=-nRTlnV2/V1 = -nRTlnP1/P2= -1×8.314×298ln(100/600) = 4439.21J Q= -W= -4439.21J

ΔSsys=Q/T= -4439.21/298= -14.90J.K-1 ΔA=ΔU-TΔS = 0+4439.21= 4439.21J ΔG=ΔH-TΔS = 0+4439.21= 4439.21J ΔSsub=-Q/T= 4439.21/298=14.90J.K-1 ΔSiso=ΔSsys+ΔSsub =0 (2) ∵等温,∴ΔU=0,ΔH=0 ∵等外压,∴W= -pe(V2-V1) W= -pe (nRT/p2-nRT/p1)

= -600×103×1×8.314×298×(1/600-1/100)×10-3=12.39kJ Q= -W= -12.39kJ ΔS= -14.90 J.K-1 ΔA= 4439.21J ΔG= 4439.21J

ΔSsub= -Q/T=12.39/298=41.57 J.K-1, ΔSiso=ΔSsys+ΔSsub=41.57-14.90=26.67J.K-1

12. 将1molO2(g)从298K,100kPa的始态,绝热可逆压缩到600kPa,试求过程

的Q,W,ΔU,ΔH,ΔA,ΔG,ΔS和ΔSiso。设O2为理想气体,已知O2r的

?

Cp,m(O2,g)=3.5R,Sm (O2,g)=205.14J.K-1.mol-1

解: ∵绝热可逆,∴Q=0,ΔS=0

T2γ=T1γ(p1/p2) 1-γ,T2/T1=(p2/p1)1-1/γ=(600/100)1-5/7=62/7, T2=497.2K ΔU=nCv,m(T2-T1)=1×2.5×8.314×(497.2-298)= 4140.37J ΔH=nCp,m(T2-T1) =1×3.5×8.314×(455.5-298)= 5796.52J

W=ΔU= 4140.37J S2 =S1+ΔS= S1

ΔG=ΔH -Δ(TS)=ΔH-S(T2-T1)

= 5796.52-205.14×(497.2-298)= -35067.37J ΔA=ΔU-Δ(TS)=ΔU-S(T2-T1)

= 4140.37-205.14×(497.2-298)= -36723.52J ΔSsub=0,ΔSiso=ΔSsys+ΔSsub =0

13. 14.

15. 16解:

(1) ∵等温可逆,∴ΔU=0,ΔH=0

W= -nRTln(V2/V1)= nRTln(p2/p1)=1×8.314×273ln2=1573.25J Q=-W= -1573.25J

ΔS=Q/T= -1573.25/273= -5.7628J/K ΔA=ΔU-TΔS=W=1573.25J ΔG=ΔH-TΔS =W=1573.25J

(2) ∵恒压可逆,∴W= -pe(V2-V1)= -pV1= -nRT= -1×8.314×273= -2269.72J Q=nCp,m(T2-T1)= nCp,m(pV2/nR-pV1/nR)=2.5pV1 =2.5×1×8.314×273=5674.305J ΔH=Q=5674.305J

ΔU=Q+W=5674.305 -2269.72=3404.585J p1V2/p1V1=nRT2/nRT1,T2=2T1

ΔS=nCp,mlnT2/T1=1×2.5×8.314ln2=14.41 J.K-1 S2=S1+ΔS =100+14.407=114.41J.K-1.mol-1 ΔG=ΔH-Δ(TS)=ΔH-(T2S2-T1S1)=ΔH-T1(2S2-S1) =5674.305-273(2×114.41-100)= -29493.555J

ΔA=ΔU-Δ(TS)=ΔU-(T2S2-T1S1)=ΔU-T1(2S2-S1) = 3404.585-273(2×114.41-100)= -31763.275J (3) ∵恒容可逆,∴ΔV =0,W=0

Qv=nCv,m(T2-T1)= nCv,m(p2V1/nR-p1V1/nR)=1.5p1V1 =1.5×1×8.314×273=3404.583J ΔU=Qv=3404.583J

ΔS= nCv,m/T dT?= nCv,mln(T2/T1) =1.5nRln(p2V1/p1V1)= 1.5nRln2

T1T2=1.5×8.314ln2=8.644J/K

ΔH=ΔU+Δ(pV)=ΔU+(p2V1-p1V1)=ΔU+ p1V1=ΔU+nRT1

=3404.583+1×8.314×273=5674.305J p2V1/p1V1=nRT2/nRT1,T2=2T1

S2=S1+ΔS=100+8.644=108.644J.K-1.mol-1 ΔG=ΔH-Δ(TS)=ΔH-(T2S2 –T1S1)=ΔH-(2T1S2-T1S1) = 5674.305-273×(2×108.644-100)= -26345.32J ΔA=ΔU-Δ(TS)=ΔU-(T2S2 –T1S1)=ΔU-(2T1S2-T1S1) = 3404.583-273×(2×108.644-100)= -28615.04J (4) ∵绝热可逆,∴Q=0,ΔS=0

T2γ=T1γ(p1/p2) 1-γ,γlnT2=γlnT1+(1-γ)ln2,lnT2=lnT1+(1/γ-1)ln2 T2/T1=2-2/5,T2=2-2/5 T1=206.9K

ΔU=nCv,m(T2-T1)=1×1.5×8.314×(206.9-273)= -824.33J ΔH=nCp,m(T2-T1)=1×2.5×8.314×(206.9-273)= -1373.89J W=ΔU= -824.33J

S2=ΔS+ S1=S1=100 J.K-1.mol-1 ΔG=ΔH-Δ(TS)=ΔH-(T2S1-T1S1) = -1373.89-100(206.9-273)= 5236.11J ΔA=ΔU -Δ(TS)=ΔU-(T2S2-T1S1) = -824.33-100(206.9-273)= 5785.67J (5) ∵绝热,∴Q=0

∵恒外压,∴ΔU =W= -pe(V2-V1)= -pe{nRT2/p2-nRT1/p1}=-nR pe (T2/p2-T1/p1)

W=ΔU =nCv,m(T2-T1)=1.5nR(T2-T1)

-pe (T2/p2-T1/p1)= 1.5(T2-T1),-T2+0.5T1= 1.5T2-1.5T1,T2= 0.8T1 ΔU=nCv,m(T2-T1)= -0.2nCv,mT1= -0.2×1×1.5×8.314×273= -680.92J ΔH=nCp,m(T2-T1)= -0.2nCv,mT1= -0.2×1×2.5×8.314×273 = -1134.86J W=ΔU =-680.92J 设计如下可逆途径:

Q1= -W1= nRTlnV2/V1= nRTlnp1/p2= 1×8.314×273ln2= 1573.25J ΔS1=Q1/T= 1573.25/273= 5.763J/K

2ΔS2= ? nCp,m/T dT =nCp,m lnT2/T1

TT1= 1×2.5×8.314ln(0.8T1/T1)= -4.638J/K ΔS=ΔS1+ΔS2=5.763-4.638= 1.125/K S2=ΔS+S1= 1.125+100=101.125 J.K-1.mol-1 ΔA=ΔU-Δ(TS) =ΔU-(T2S2-T1S1)

= -680.92-273(0.8×101.125-100)= 4533.4J

ΔG=ΔH-Δ(TS) =ΔH-(T2S2-T1S1)

= -1134.86 -273(0.8×101.125-100)= 4079.4J 18解:

(1)

ΔG1=?100kPa200kPaVldp?Vl(100?200)??100Vl

ΔG2=0 ΔG3=?200kPa100kPaVgdp?Vgl(200?100)?100Vg

ΔG= ΔG1+ ΔG2 +ΔG3=100(Vg-Vl)>0,所以373K,200kPa的液态水稳定。 (2)

ΔG1=?273k263K?SldT??Sl(273?263)??10Sl

ΔG2=0 ΔG3=?263k273K?SsdT??Ss(263?273)?10Ss

ΔG= ΔG1+ ΔG2 +ΔG3=10(Ss-Sl)<0,所以263K,100kPa的冰稳定。

19解:

(1) C(石墨)→C(金刚石)ΔtrsGm

?

?

?

?

=?

ΔtrsHm =ΔcHm (石墨)-ΔcHm (金刚石)=-393.51-(-395.40)=1.89kJ.mol-1

ΔtrsSm

?

?? =Sm(金刚石)- Sm(石墨)=2.45-5.71= -3.26J.K-1.mol-1

?

?

ΔtrsGm =ΔtrsHm -TΔtrsSm =1.89-298×(-3.26×10-3)=2861.48 J.mol-1(2) ∵ΔtrsGm >0,∴石墨比金刚石稳定。

?

?

11?3?G??G?Vdp?0,1.2?10(?(3) trs m trs ? p? ? p ? ) dp ? ? 2861 . 48

?金?石? m

pp12×10-3×(1/3513-1/2260)(p-p?)≤-2861.48

p-p?≥1510932234.8Pa,p≥1511032234.8Pa≥1.511×109Pa 故:增加压力可使不稳定晶体向稳定晶体转化。

20解:

RT ? ap , p ? RT , a ? RT pVm?V m ?Vm?ap V2 V 2 RT V ? a p

m,2W???pdV???dV??RTln?RTln2V1Vm,1?ap1 V1Vm?aG ( ? ) ? V

T?p p2 p2 p?G??Vdp??(RT/p?a)dp?RTln2?a(p2?p1)p1 p 1 p 1

?A( ? V ) T ? ? p ? A ? ? V 2 pdV ? W ? RT ln p 2

?V1p1

?S?VR()T??()p?? ? p ? T p

? S ? p 2 ? R / pdp ? ? R ln p 2

?p1p1 p

Q?T?S??RTln2p1

?U?Q?W??RTlnp2p?RTln2?0 p 2 p 1

ap ? H ? ? U ? ? ( pV ) ? ? ( pV ) ? p 2 V 2 ? p 1V 1 ? RT 2 ? 2 ? RT 1 ? ap 1 ? a ( p 2 ? p 1)

23

VT?2试证明:C p ? C V ? ?证明:

?(U?pV)?H?U?UC?C?()?()?()?(p )V p V ? T p ? T V ?T?T

1?V1?V??()???p若令膨胀系数 V ? ( ? p ) T 。 T ,压缩系数 V ? V ? U ? U ?U?U?()p?p()p?()V?()p??Vp?()V?T?T ? T ? T ?T?UU (? U ) V ? ( ? ) T ( ? V (复合函数的性质) ( ) p ?)p?T?T?V?T

?U?U?V?U?U?()?()()??pV?()??V(? pV ? T V ? V T ? T p ? T V ? V ) T ?

?(A?TS)??V()? ?pVT ?V ? ? V ( ? A ) T ? ? VT ( ? S ) T ? ? pV (麦克斯韦关系式)

?V?V ?p?p???pV??VT()V??pV??VT()V?T?T

?p?V?p( ) V ??()( ? T p ? V ) T (循环公式) ?TV??VT(?)?p?V??2V2T?2VT?Tp???VT()p()T????VV ( )??V? ? T ? ?p T

?Ua()?24对van der Waals实际气体,试证明: ? V T V 2

m2 nRT n p nR a ?证明:范氏方程:p??2?()V?V?nbV?TV?nb

?U?S?pdU?TdS?pdV?()T?T()T?p?T()V?p?V?V?T

?UnRTn2aa() ??p? ? T 2 2 ?VV?nbV Vm25

证明:理想气体方程:pV=nRT

?U?H)S()S?V?p对理想气体,试证明: ? ? nR ?U()V?S( 26

(?U?H?U)T??p,()T?V,()V?T?V?p?S?U?H)S()S?V?p?pV?nRT????nR?UTT()V?S解法一: (

(1) 此过程为等压降温:

ΔHm(1)=nCp,m(298-600)=186.20×(298-600)=-56.23kJ.mol-1

ΔUm(1)=ΔHm(1)-pΔV≈ΔHm(1)= -56.23kJ.mol-1

TnCp,mΔS(1)=2nCp,mln(T2/T1)=1×186.20ln(298/600)=-130.31J.K-1dT? ?T 1 T

?

S2= Sm(CaSO4.2H2O,s)=193.97 J.K-1

S1=S2-ΔS(1)=193.97+130.31=324.28 J.K-1 ΔGm(1)=ΔHm(1)-Δ(TS)=ΔHm(1)-(T2S2-T1S1)

=-56.23-(298×193.97-600×324.28)×10-3=80.53 kJ.mol-1

ΔAm(1)=ΔUm(1)-Δ(TS)=ΔUm(1)-(T2S2-T1S1)

=-56.23-(298×193.97-600×324.28)×10-3=80.53kJ.mol-1

(2) 此过程为等温等压化学反应:

????

ΔrHm(2)=ΔfHm (CaSO4,s)+2ΔfHm (H2O,g)-ΔfHm(CaSO4.2H2O,s )

= -1432.68+2(-241.82)-(-2021.12)=104.8kJ.mol-1

????

ΔrSm(2)= Sm(CaSO4,s)+2Sm (H2O,g)-Sm(CaSO4.2H2O,s )

=2×188.83+106.70-193.97=290.39J.K-1.mol-1

ΔrUm(2)=ΔrHm(2)-Δ(pV)=ΔrHm(2)-pV=ΔrHm(2)-nRT

=104.8-2×8.314×298×10-3=99.84kJ.mol-1

???

ΔrGm(2)=ΔrHm(2)-TΔrSm(2)= 104.8-298×290.39×10-3=18.26kJ.mol-1

?

?

?

?

???

ΔrAm(2)=ΔrUm(2)-TΔrSm (2)= 99.84-298×290.39×10-3=13.30 kJ.mol-1

(3) 此过程为等压升温:

ΔHm(3)=∑nCp,m(600-298)=(99.6+2×33.58)×(600-298)= 50.36kJ.mol-1

?

ΔUm(3)=ΔHm(3)-Δ(pV)≈ΔrHm(3)-nR(T2-T1)

=50.36-2×8.314×(600-298)×10-3=45.34kJ.mol-1

ΔS(3)= ? ? nC p ,m / TdT ?∑nCp,mln(T2/T1)= (99.60+2×33.58)ln(600/298)

T1T2=116.70J.K-1

S1=Sm(CaSO4 ,s)+ 2Sm (H2O ,g) =106.70+2×188.83=484.36 J.K-1 S2=S1+ΔS(3)= 484.36 +116.70=601.06 J.K-1 ΔGm(3)=ΔHm(3)-Δ(TS)=ΔHm(3)-(T2S2-T1S1)

=50.36-(600×601.06-298×484.36)×10-3=-165. 94kJ.mol-1

ΔAm(3)=ΔUm(3)-Δ(TS)=ΔUm(3)-(T2S2-T1S1)

=45.34-(600×601.06-298×484.36)×10-3=-170.96kJ.mol-1

ΔHm=ΔHm(1)+ΔHm (2)+ΔrHm Q=ΔHm=98.93kJ

W= -pe(V2-V1)≈-pV= -2×8.314×600=-9.98kJ

?

?

?

(3)= -56.23+104.8+50.36=98.93kJ.mol-1

ΔSm =ΔSm (1) +ΔrSm(2) +ΔSm(3)

= -130.31+290.39+116.7=276.78 J.K-1.mol-1

ΔUm=Q+W=98.93-9.98=88.95 kJ.mol-1

ΔGm=ΔHm-TΔSm =98.93-600×276.78×10-3=-67.14 kJ.mol-1 ΔAm=ΔUm-TΔSm=88.95-600×276.78×10-3=-77.12kJ.mol-1 或: ΔUm=ΔUm(1)+ΔUm (2)+ΔrUm (3)

= -56.23+99.84+45.34=88.95 kJ.mol-1 ΔGm=ΔGm(1)+ΔGm (2)+ΔrGm (3)

=80.53+18.26-165.94= -67.15kJ.mol-1 ΔAm=ΔAm(1)+ΔAm (2)+ΔrAm (3)

=80.53+13.30-170.96= -77.13 kJ.mol-1

解法二:

????

ΔrHm(298K)=ΔfHm(CaSO4,s)+2ΔfHm(H2O,g )-ΔfHm(CaSO4.2H2O,s )

???

?

= -1432.68+2(-241.82)-(-2021.12)=104.8kJ.mol-1

ΔCp=2 Cp,m(H2O,g)+ Cp,m(CaSO4,s)- Cp,m(CaSO4.2H2O,s)

=2×33.58+99.60-186.2=-19.44 J.mol-1.K-1

(??H

)p??Cp?TT2 ?T1 T2d?H???CpdT.??Cp(T2?T1)T11ΔrHm (T2) =ΔrHm (T1)+ΔCp(T2-T1)

ΔrHm (600K)=ΔrHm(298K)+ΔCp(T2-T1)

= 104.8-19.44×10-3(600-298)= 98.93kJ.mol-1

W= -pe(V2-V1)≈-pV= -2×8.314×600= -9.98kJ Q=ΔrHm (600K)= 98.93kJ

ΔrUm (600K)= Q +W=98.93-9.98=88.95 kJ.mol-1

?

??

?

ΔrSm (298K)=Sm(CaSO4,s)+2Sm ?(H2O,g ) -Sm(CaSO4.2H2O,s )

= 106.70+2×188.93-193.97=290.39J.K-1.mol-1

(?Cp ??S)p??TT???

T2T2?CpT2d?S?dT.??Cln ?T 1 ?T p T 1 11 TΔrSm (T2) =ΔrSm (T1)+ΔCplnT2/T1

ΔrSm (600K)=ΔrSm(298K)+ΔCplnT2/T1

??

=290.39-19.44ln600/298=276.78 J.K-1.mol-1

ΔrGm =ΔrHm-TΔrSm

??

?

?

?

ΔrGm (600K)=ΔrHm(600K)-TΔrSm(600K)

?

=98.93-600×276.78×10-3=-67.14 kJ.mol-1

ΔrAm =ΔrUm-TΔrSm

??

?

?

?

ΔrAm (600K)=ΔrUm(600K)-TΔrSm(600K)

?

=88.95-600×276.78×10-3=-77.12kJ.mol-1

27解:

设计如下可逆途径:

ΔS(1)=?nCp,m/TdT?nCp,mlnT2/T1=1×54.68ln387/298=14.29J.K-1

T1 ΔS(2)=ΔfusHm/T=15.66×103/387=40.47J.K-1

T2ΔS(3)=?nCp,m/TdT?nCp,mlnT2/T1=1×79.59ln457/387=13.23 J.K-1

T1

T2ΔS(4)= ΔvapHm/T=25.52×103/457=55.84J.K-1

ΔS=ΔS(1)+ΔS(2)+ΔS(3)+ΔS(4)= 14.29+40.47+13.23+55.84=123.83 J.K-1

??

Sm(457K,I2,g)=S m(298K,I2,s)+ΔS=116.14+123.83=239.97J.K-1.mol-1