2014中考数学专题复习 - 压轴题(含答案) 下载本文

11. 解:(1)设A地经杭州湾跨海大桥到宁波港的路程为x千米,

x?120x················································································· 2分 ?, ·

1023解得x?180.

由题意得

?A地经杭州湾跨海大桥到宁波港的路程为180千米. ·········································· 4分 (2)1.8?180?28?2?380(元),

······················ 6分 ?该车货物从A地经杭州湾跨海大桥到宁波港的运输费用为380元. ·

(3)设这批货物有y车,

由题意得y[800?20?(y?1)]?380y?8320, ··················································· 8分 整理得y?60y?416?0,

解得y1?8,y2?52(不合题意,舍去), ······················································· 9分 ····················································································· 10分 ?这批货物有8车. ·

12. 解:(1)2,221a,a. ········································································· 3分 44(2)相等,比值为2. ·············· 5分(无“相等”不扣分有“相等”,比值错给1分) (3)设DG?x,

在矩形ABCD中,?B??C??D?90,

???HGF?90?,

??DHG??CGF?90???DGH,

?△HDG∽△GCF, DGHG1???, CFGF2?CF?2DG?2x. ····················································································· 6分 同理?BEF??CFG. ?EF?FG,

?△FBE≌△GCF,

1?BF?CG?a?x. ·················································································· 7分

4?CF?BF?BC,

12················································································ 8分 ?2x?a?x?a, ·

44解得x?2?1a. 42?1······················································································ 9分 a. ·

4即DG?(4)

32a, ······························································································· 10分 1627?1822a. 12分 813. 解:(1)分别过D,C两点作DG⊥AB于点G,CH⊥AB于点H. ……………1分 ∵ AB∥CD,

∴ DG=CH,DG∥CH.

∴ 四边形DGHC为矩形,GH=CD=1.

∵ DG=CH,AD=BC,∠AGD=∠BHC=90°,

C D ∴ △AGD≌△BHC(HL).

M N AB?GH7?1∴ AG=BH==3. ………2分 ?22∵ 在Rt△AGD中,AG=3,AD=5, ∴ DG=4.

A B E G H F

1?7??4?∴ S梯形ABCD??16. ………………………………………………3分 2(2)∵ MN∥AB,ME⊥AB,NF⊥AB,

C D ∴ ME=NF,ME∥NF.

M N ∴ 四边形MEFN为矩形.

∵ AB∥CD,AD=BC, ∴ ∠A=∠B.

∵ ME=NF,∠MEA=∠NFB=90°, A B E G H F ∴ △MEA≌△NFB(AAS).

∴ AE=BF. ……………………4分 设AE=x,则EF=7-2x. ……………5分 ∵ ∠A=∠A,∠MEA=∠DGA=90°,

∴ △MEA∽△DGA.

AEME∴ . ?AGDG4∴ ME=x. …………………………………………………………6分

348?7?49∴ S矩形MEFN?ME?EF?x(7?2x)???x???. ……………………8分

33?4?677当x=时,ME=<4,∴四边形MEFN面积的最大值为49.……………9分

436(3)能. ……………………………………………………………………10分

4由(2)可知,设AE=x,则EF=7-2x,ME=x.

3若四边形MEFN为正方形,则ME=EF.

4x21 即 ?7-2x.解,得 x?. ……………………………………………11分

3102∴ EF=7?2x?7?2?2114?<4. 105?14?196. ????525??2∴ 四边形MEFN能为正方形,其面积为S正方形MEFN14. 解:(1)由题意可知,m?m?1???m?3??m?1?.

解,得 m=3. ………………………………3分

∴ A(3,4),B(6,2);

y ∴ k=4×3=12. ……………………………4分

A (2)存在两种情况,如图:

N1 ①当M点在x轴的正半轴上,N点在y轴的正半轴 B 上时,设M1点坐标为(x1,0),N1点坐标为(0,y1).

M2 O x M1 ∵ 四边形AN1M1B为平行四边形,

∴ 线段N1M1可看作由线段AB向左平移3个单位, N2 再向下平移2个单位得到的(也可看作向下平移2个单位,再向左平移3个单位得到的). 由(1)知A点坐标为(3,4),B点坐标为(6,2),

∴ N1点坐标为(0,4-2),即N1(0,2); ………………………………5分 M1点坐标为(6-3,0),即M1(3,0). ………………………………6分

2设直线M1N1的函数表达式为y?k1x?2,把x=3,y=0代入,解得k1??.

32∴ 直线M1N1的函数表达式为y??x?2. ……………………………………8分

3②当M点在x轴的负半轴上,N点在y轴的负半轴上时,设M2点坐标为(x2,0),N2点坐标为(0,y2). ∵ AB∥N1M1,AB∥M2N2,AB=N1M1,AB=M2N2, ∴ N1M1∥M2N2,N1M1=M2N2.

∴ 线段M2N2与线段N1M1关于原点O成中心对称.

∴ M2点坐标为(-3,0),N2点坐标为(0,-2). ………………………9分

2设直线M2N2的函数表达式为y?k2x?2,把x=-3,y=0代入,解得k2??,

32∴ 直线M2N2的函数表达式为y??x?2.

322所以,直线MN的函数表达式为y??x?2或y??x?2. ………………11分

33(3)选做题:(9,2),(4,5). ………………………………………………2分 15. 解:(1)解法1:根据题意可得:A(-1,0),B(3,0);

则设抛物线的解析式为y?a(x?1)(x?3)(a≠0)

又点D(0,-3)在抛物线上,∴a(0+1)(0-3)=-3,解之得:a=1

∴y=x-2x-3 ····················································································· 3分 自变量范围:-1≤x≤3 ········································································ 4分

解法2:设抛物线的解析式为y?ax2?bx?c(a≠0)

根据题意可知,A(-1,0),B(3,0),D(0,-3)三点都在抛物线上

?a?b?c?0?a?1?? ∴?9a?3b?c?0,解之得:?b??2

?c??3?c??3??2

∴y=x-2x-3 ··································································· 3分

自变量范围:-1≤x≤3 ···················································· 4分

(2)设经过点C“蛋圆”的切线CE交x轴于点E,连结CM, 在Rt△MOC中,∵OM=1,CM=2,∴∠CMO=60°,OC=3 在Rt△MCE中,∵OC=2,∠CMO=60°,∴ME=4

∴点C、E的坐标分别为(0,3),(-3,0) ·········································· 6分

2

∴切线CE的解析式为y?3················································· 8分 x?3 ·

3y

C

A B x M O E

D

解图12

(3)设过点D(0,-3),“蛋圆”切线的解析式为:y=kx-3(k≠0) ······················ 9分

??y?kx?3 由题意可知方程组?只有一组解 2??y?x?2x?3 即kx?3?x2?2x?3有两个相等实根,∴k=-2 ······································· 11分

∴过点D“蛋圆”切线的解析式y=-2x-3 ·············································· 12分

16.

解:(1)OP?6?t,OQ?t?2. 3